Recycling of Sago (Metroxylon sagu) Bagasse with Chicken Manure Slurry through Co-composting

Authors
1 Department of Crop Science, Universiti Putra Malaysia Bintulu Sarawak Campus
2 1Department of Crop Science, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus
3 Faculty of Forestry, Universiti Putra Malaysia
Abstract
Mass generation of bagasse wastes from every 100 kg of sago starch pith being processed are likely to pollute the water when they are discarded into rivers. The increase of livestock production increases manure production and improper management of these manures will pollute the soil and environment, and causing diseases outbreak. Co-composting of sago bagasse and chicken manure could serve as a viable alternative of managing these wastes. In order to reduce pollution, the objective of this study was to co-compost sago bagasse and chicken manure slurry to obtain a high quality organic fertilizer. The sago bagasse was thoroughly mixed with chicken manure slurry, chicken feed, and molasses in polystyrene boxes. Co-compost temperature readings were taken 3 times daily. Nitrogen and P concentrations increased (1.46 and 0.12%, respectively), whereas C content decreased (48.6%) throughout the co-composting. The CEC increased from 45.7 to 68.3 cmol kg-1 indicating humified organic material. By the end of co-composting, humic acid and ash contents also increased from 7.3 to 10.0% and 7.1 to 11.6%, respectively. The pH of the co-compost increased from 4.78 to 7.21. The final co-compost had no foul odour, but it had low heavy metals content, and a desired amount of nutrients. Seed germination indices of phytotoxicity test were above 80% of final co-compost. Co-compost product with balanced nutrients content can be produced by co-composting sago bagasse and chicken manure slurry.

Keywords


1. Abd-Aziz, S. 2002. Sago Starch and Its Utilization: A Review. J. Biosci. Bioeng., 94:526-529.
2. Abdulla, H. M. 2007. Enhancement of Rice Straw Composting by Lignocellulolytic Actinomycete Strains. Int. J. Agric. Biol., 9(1): 106-109.
3. Ahmed, O. H., Husni, M. H. A., Anuar, A. R., Hanafi, M. M. and Angela, E. D. S. 2004. A Modified Way of Producing Humic Acid from Composted Pineapple Leaves. J. Sustain. Agri., 25:129-139.
4. Ahring, B., Angelidaki, I. and Johansen, K. 1992. Anaerobic Treatment of Manure Together with Industrial Waste. Water Sci. Technol., 25(7): 311-318.
5. Angelidaki, I. and Ahring, B. K. 1997. Codigestion of Olive Oil Mill Wastewater with Manure, Household Waste or Sewage Sludge. Biodegrad., 8: 221-226.
6. Apun, K., Lihan, S., Wong, M. K. and Bilung, L. M. 2009. Microbiological Characteristics of Trunking and Non-Trunking Sago Palm Peat Soil: Programme and Abstract. 1st ASEAN Sago Symposium 2009: Current Trend and Development in Sago Research, October 29–30, 2009, Riverside Majestic Hotel, Kuching, Sarawak, Malaysia.
7. Arifin, B., Bono, A. and Janaun, J. 2006. The Transformation of Chicken Manure into Mineralized Organic Fertilizer. J. Sustain. Sci. Manag., 1(1): 58-63.
8. Auldry, C. P., Ahmed, O. S. and Majid, N. M. 2009. Chemical Characteristics of Compost and Humic Acid from Sago Waste (Metroxylon sagu). A. M. J. Appl. Sci., 6(11): 1880-1884.
9. Awg-Adeni, D.S., Abd-Aziz, S., Bujang, K. and Hassan, M.A. 2009. Bioconversion of Sago Residue into Value Added Products. Afr. J. Biotechnol., 9: 2016-2021.
10. Ayed, L.B., Hassen, A., Jedidi, N., Saidi, N. and Olfa, B. M. 2007. Microbial C and N Dynamics during Composting of Urban Solid Waste. Water Resour. Manag., 25:24-29.
11. Baffi, C., Abate, M. T. D., Nassisi, A., Silva, S., Benedetti, A., Genevini, P. L. and Adani, F. 2006. Determination of Biological Stability in Compost: A Comparison of Methodology. Soil. Biol. Biochem., 39:1284-1293.
12. Baharuddin., A. S., Lim, S. H., Md Yusof, M. Z., Abdul Rahman, N. A., Md Shah, U. K., Hassan, M. A., Wakisaka, M., Sakai, K. and Shirai, Y. 2010. Effects of Palm Oil Mill Effluent (POME) Anaerobic Sludge from 500 m3 of Closed Anaerobic Methane Digested Tank on Pressed-shredded Empty Fruit Bunch (EFB) Composting Process. Afr. J. Biotechnol., 9(16): 2427-2436.
13. Bremner, J. M. and Lees, H. 1949. Studies on Soil Organic Matter. Part II. The Extraction of Organic Matter from Soil by Neutral Reagents. J. Agr. Sci., 39:274-279.
14. Brock, D. T. and Madigan, T. M. 1991. Biology of Microorganism. 6th Edition, Englewood Cliffs, Prentice Hall, NJ, PP.703-717.
15. Campitelli, P. A., Velasco, M. I. and Ceppi, S. B. 2006. Chemical and Physicochemical Characteristics of Humic Acids Extracted from Compost, Soil and Amended Soil. Talanta, 69: 1234–1239.
16. Cecil, J. 2002. The Development of Technology for the Extraction of Sago: New Frontiers of Sago Palm Studies. In: “Proceedings of the International Symposium on SAGO (SAGO 2001)”, (Eds.): Kainuma, K., Okazaki, M., Toyoda, Y. and Cecil, J. E.. Universal Academy Press, Tokyo, PP. 83–91.
17. Chefetz, B., Hatcher, P.H., Hadar, Y. and Chen, Y. 1996. Chemical and Biological Characterization of Organic Matter during Composting of Municipal Solid Waste. J. Environ. Qual., 25:776–785.
18. Chew, T. A., Md. Isa, A. B. and Mohayidin, M. G. 1998. The Sago Industry in Malaysia: Present Status and Future Prospects. Proceedings of the 7th International Working Conference on Stored-Product Protection, 14-19 October, 1998, Beijing, China, PP. 1720-1728.
19. Day, M. and Shaw, K. 2000. Biological, Chemical and Physical Processes of Composting. In: “Compost Utilization in Horticultural Cropping Systems”, (Eds.): Stofella, P. J. and Kahn, B. A.. Boca Raton, Lewis Publishers, USA, PP. 17-50.
20. Gopinathan, M. and Thirumurthy, M. 2012. Evaluation of Phytotoxicity for Compost from Organic Fraction of Municipal Solid Waste and Paper and Pulp Mill Sludge. Environ. Res., 1(59):47-51.
21. Graves, E.R. and Hattemer, G.M. 2000. Composting. In: Environmental Engineering Part 637. National Engineering Handbook. USDA. PP. 88.
22. Hu, Z., Lane, R. and Wen, Z. 2008. Composting Clam Processing Wastes in a Laboratory and Pilot-scale in-vessel System. Waste Manage., 29(1): 180-185.
23. Hue, N. V. and Liu, J. 1995. Predicting Compost Stability. Compost Sci. Util., 3:8-15.
24. Iannotti, D. A., Grebus, M. E., Toth, B. L., Madden, L. V. and Hoitink, H. A. J. 1994. Oxygen Respirometry to Assess Stability and Maturity of Composted Municipal Waste. J. Environ. Qual., 23:1177-1183.
25. Keeney, D.R. and Nelson, D.W. 1982. Nitrogen Inorganic Forms. Part 2. In: “Methods of Soil Analysis”, (Eds.): Page, A. L., Keeney, D. R., Baker, D. E., Miller, R. H., Ellis, R. Jr. and Rhoades, J. D.. Agron. Monogr. 9. ASA and SSSA, Madison, WI, PP.643.
26. Kuhad, R. C., Singh, A. and Erikson, K. 1997. Microorganisms and Enzymes Involved in the Degradation of Plant Fiber Cell Walls. In: “Advances in Biochemical Engineering: Biotechnology in the Pulp and Paper Industry”. Springer-Verleg, New York, PP. 45-125.
27. Liang, C. and Das Mcclendon, K. C. 2003. The Influence of Temperature and Moisture Content Regimes on the Aerobic Microbial Activity of a Biosolids Composting Blend. Bioresource Technol., 86:131-137.
28. Luo, W., Chen, T. B., Zheng, G. D., Gao, D., Zhang, Y. A. and Gao, W. 2008. Effect of Moisture Adjustments on Vertical Temperature Distribution during Forced-aeration Static-pile Composting of Sewage Sludge. Resour. Conserv. Recy., 52: 635-642.
29. Mathur, S. P., Owen, G. and Schnitzer, H. 1993. Determination of Compost Biomatury. I. Literature Review. Biol. Agri. Hortic., 10:87-108.
30. Murphy, J. and Riley, J. P. 1962. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta, 27:31-36.
31. Oates, C. and Hicks, A. 2002. Sago Starch Production in Asia and the Pacific--problems and Prospects: New Frontiers of Sago Palm Studies. Proceedings of the International Symposium on SAGO (SAGO 2001), Universal Academy Press, Tokyo, PP. 27-36.
32. Peech, H. M. 1965. Hydrogen-ion Activity. Part 2. In: “Methods of Soil Analysis”, (Eds.): Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L., Clark, F. E. and Dinauer, R. C.. American Society of Agronomy, Madison, WI, PP.914-926.
33. Pena-Mendez, E. M., Havel, J. and Patocka, J. 2005. Humic Substances-compounds of still Unknown Structure: Applications in Agriculture, Industry, Environment, and Biomedicine. J. Appl. Biomed., 3:13–24.
34. Quek, S. Y., Wase, D. A. J. and Forster, C. F. 1998. The Use of Sago Waste for the Sorption of Lead and Copper. Water SA., 24:251-256.
35. Satisha, G. C. and Devarajan, L. 2007. Effect of Amendments on Windrow Composting of Sugar Industry Pressmud. Waste Manage., 27:1083- 1091.
36. Schollenberger, C. J. and Dreibelbis, F. R. 1945. Determination of Exchange Capacity and Exchangeable Bases in Soil: Ammonium Acetate Method. Soil Sci., 59:13-24.
37. Smidt, E., Meissl, K., Schmutzer, M. and Hinterstoisser, B. 2007. Co-composting of Lignin to Build of Humic Substances: Strategies in Waste Management to Improve Compost Quality. Ind. Crop Prod., 27:196–201.
38. Stevenson, F. J. 1994. Humus Chemistry: Genesis, Composition and Reactions. 2nd Editioin, John Wiley and Sons, New York, PP. 378-486.
39. Strom, P. F. 1985. Identification of Thermophilic Bacteria on Solid-waste Composting. Appl. Environ. Microbiol., 50: 906-913.
40. Sullivan, D. M. and Miller, R. O. 2000. Compost Quality Attributes, Measurements, and Variability. In: Compost Utilization in Horticultural Cropping Systems”, (Eds.): Stoffella, P. J. and Kahn, B. A.. Boca Raton, Lewis Publishers, USA, PP. 95-120.
41. Tan, K. H. 2003. Soil Sampling, Preparation and Analysis. Taylor and Francis Inc., New York, PP.245-250.
42. Tiquia, S. M. and Tam, F. Y. 1998. Elimination of Phytotoxicity during Co-composting of Spent Pig-manure Sawdust Litter and Pig Sludge. Bioresource Technol., 65:43-49.
43. Trautmann, N. M. and Krasny, M. E. 1997. Composting in the Classroom: Scientific Inquiry for High School Students. Cornell University, PP. 1-5.
44. USEPA, 1993. Standards for the Use or Disposal of Sewage Sludge: Final Rules. Fed. Regist., 58:9248-9415.
45. Vikineswary, S., Shim, Y. L., Thambirajah, J. J. and Blakebrough, N. 1994. Possible Microbial Utilization of Sago Processing Wastes. Resour. Conserv. Recy., 11:289–296.
46. Wiley, B. B. and Westerberg, S. C. 1969. Survival of Human Pathogens in Composted Sewage. Appl. Microbiol., 18(6): 994-1001.
47. Wong, J. W. C., Mak, K.F., Chan, N. W., Lam, A., Fang, M., Zhou, L. X., Wu, Q. T. and Liao, X. D. 2001. Co-composting of Soybean Residues and Leaves in Hong Kong. Bioresource Technol., 76:99-106.
48. Wood End Research Laboratory. 2005. Interpreting Waste and Compost Tests. Woods End Res. Lab., 2(1): 1-4.
49. Wu, L., Ma, L. Q. and Martinez, G. A. 2000. Comparation of Methods for Evaluating Stability and Maturity of Biosolids Compost. J. Environ. Qual., 29:424-429.
50. Wu, L. and Ma, L. Q. 2001. Effects of Sample Storage on Biosolids Compost Stability and Maturity Evaluation. J. Environ. Qual., 30:222-228.
51. Zucconi, F., Pera, A., Forte, M. and de Bertoldi, M. 1981. Evaluating Toxicity of Immature Compost. Bio. Cycle, 22: 54-57.