A Well-Being Perspective on Drone Adoption by Iranian Potato Farmers

Document Type : Original Research

Authors
1 Department of agricultural extension and education, Razi university, Kermanshah, Iran
2 Department of agricultural extension and education, Razi University, Kermanshah, Iran
Abstract
Traditional technology acceptance models primarily focus on behavioral factors, with limited exploration of well-being perspectives. This study examines the role of technology well-being, based on the PERMA framework, in shaping the intention and adoption of drone technology among potato farmers in western Iran. Using a descriptive-correlational survey design, path analysis of a systematic sample of 234 farmers revealed that intention, engagement, social relationships, meaning, and accomplishments significantly influence drone adoption, with path coefficients of 0.85 for intention and 0.38 for acceptance. Positive emotions, however, showed no significant effect. These findings highlight the critical role of well-being in technology acceptance, offering novel insights for precision agriculture. The results suggest that policymakers should prioritize persuasive strategies to enhance farmers’ intentions, beyond merely promoting technology use. As one of the first studies to apply well-being theory to agricultural technology adoption, this research lays a foundation for future investigations, emphasizing technology well-being as a key driver of agricultural innovation.

Keywords

Subjects


1.      Acıbuca, V. (2024). The possibility of using unmanned aerial vehicles in agricultural activities in Turkey. Egypt. J. Agron., 46(1), 39–49.
2.      Antolini, L. S., Scare, R. F., & Dias, A. (2015). Adoption of precision agriculture technologies by farmers: A systematic literature review and proposition of an integrated conceptual framework. In IFAMA World Conference (pp. 14–17).
3.      Barachi, M. E., Abu Salim, T., Nyadzayo, M. W., Mathew, S. S., Badewi, A., & Amankwah-Amoah, J. (2022). The relationship between citizen readiness and the intention to continuously use smart city services: Mediating effects of satisfaction and discomfort. Technol. Soc., 74(c).
4.      Blut, M., Chong, A., Tsigna, Z., & Venkatesh, V. (2022). Meta-analysis of the unified theory of acceptance and use of technology (UTAUT): Challenging its validity and charting a research agenda in the red ocean. J. Assoc. Inf. Syst., 23, 13–35.
5.      Chisale, E., & Phiri, F. M. (2022). PERMA model and mental health practice. Asian J. Pharm. Nurs. Med. Sci., 10(2), 21–24.
6.      Dai, Q., & Cheng, K. (2022). What drives the adoption of agricultural green production technologies? An extension of TAM in agriculture. Sustainability, 14(21), 14457.
7.      Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for sustainable global food security. Potato Res., 57, 185–199.
8.      Dissanayake, C., Jayathilake, W., Wickramasuriya, H., Dissanayake, U., Kopiyawattage, K., & Wasala, W. (2022). Theories and models of technology adoption in agricultural sector. Hum. Behav. Emerg. Technol., (5), 1–15.
9.      Djamasbi, S., Strong, D. M., & Dishaw, M. T. (2010). Affect and acceptance: Examining the effects of positive mood on the technology acceptance model. Decis. Support Syst., 48(2), 383–394.
10.  Gustavsen, G. (2021). Sustainability and potato consumption. Potato Res., 64, 403–413.
11.  Hair, J., & Alamer, A. (2022). Partial least squares structural equation modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Res. Methods Appl. Linguist., 1(3), 1–16.
12.  Hankin, D., Mohr, M., & Newman, K. (2019). Systematic sampling. In Sampling Theory: For the Ecological and Natural Resource Sciences. Oxford University Press.
13.  Hussain, S., Qazi, S., Ahmed, R. R., Vveinhardt, J., & Streimikiene, D. (2019). Innovative user engagement and playfulness on adoption intentions of technological products: Evidence from SEM-based multivariate approach. Econ. Res.-Ekon. Istraz., 32(1), 555–577.
14.  Koelle, M., Boll, S., Olsson, T., Williamson, J. R., Profita, H., Kane, S., & Mitchell, R. (2018). (Un)Acceptable!?!: Re-thinking the social acceptability of emerging technologies. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–8).
15.  Lee, A., Ramasamy, R., & Subbarao, A. (2025). Understanding psychosocial barriers to healthcare technology adoption: A review of TAM technology acceptance model and unified theory of acceptance and use of technology and UTAUT frameworks. Healthcare, 13, 250–262.
16.  Lenzenweger, M. F. (2004). [Review of the book Authentic happiness: Using the new positive psychology to realize your potential for lasting fulfillment]. Am. J. Psychol., 161(5), 936–937.
17.  Li, W., Clark, B., Taylor, J. A., Kendall, H., Jones, G., Li, Z., ... & Frewer, L. J. (2020). A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Comput. Electron. Agric., 172, 105305.
18.  Lubis, M., Khairiansyah, A., Jafar, Q., & Almaarif, A. (2019). Exploring the user engagement factors in computer-mediated communication. J. Phys.: Conf. Ser., 1235(1), 012040.
19.  Mansoor, M., Syed, F. T., & Awan, T. M. (2020). Positive emotions as underlying mechanisms between customer gratitude and behavioral intentions. J. Adv. Bus. Stud., 6(1), 9–20.
20.  McCarthy, C., Nyoni, Y., Kachamba, D., Banda, L., Moyo, B., Chisambi, C., Banfill, J., & Hoshino, B. (2023). Can drones help smallholder farmers improve agriculture efficiencies and reduce food insecurity in Sub-Saharan Africa? Local perceptions from Malawi. Agriculture, 13(5), 1075.
21.  Müller, L. J., Mekler, E. D., & Opwis, K. (2016). Hedonic enjoyment and personal expressiveness in positive user experiences. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 3166–3177).
22.  Nguyen, T., Truong, T., & Nguyen, M. (2024). Examining farmers’ intention to use drone applications in agricultural production. J. Int. Econ. Manag., 24(3), 59–76.
23.  Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agron. J., 113(2), 20595.
24.  Patil, A., Mailapalli, D., & Singh, P. (2024). Drone technology reshaping agriculture: A meta-review and bibliometric analysis on fertilizer and pesticide deployment. J. Biosyst. Eng., 49, 382–398.
25.  Rachmawati, S., Syah Putra, A., Priyatama, A., Parulian, D., Katarina, D., Tri Habibie, M., & Valentino, V. H. (2021). Application of drone technology for mapping and monitoring of corn agricultural land. In 8th International Conference on ICT for Smart Society: Digital Twin for Smart Society, ICISS 2021 - Proceeding.
26.  Rao, V. M. (1996). Agricultural development with a human face: Experiences and prospects. Econ. Polit. Wkly., 31(26), 50–62.
27.  Rouidi, M., Elmajid, E., Hamdoune, A., Choujtani, K., & Chati, A. (2022). TAM-UTAUT and the acceptance of remote healthcare technologies by healthcare professionals: A systematic review. Inform. Med. Unlocked, 32, 1–14.
28.  Ryan, C., Bergin, M., & Wells, J. (2018). Theoretical perspectives of adherence to web-based interventions: A scoping review. Int. J. Behav. Med., 25, 17–29.
29.  Şahin, F., Doğan, E., Okur, M. R., & Sahin, Y. (2022). Emotional outcomes of e-learning adoption during compulsory online education. Educ. Inf. Technol., 27, 7827–7849.
30.  Seligman, M. (2018). PERMA and the building blocks of well-being. J. Posit. Psychol., 13, 333–335.
31.  Shouji, C., Yu, S. H., Kang, Y. H., Choi, Y., Dafsari, R. A., & Lee, J. (2021). Experimental analysis of the downwash airflow created by a single rotor blade in agricultural drones. J. Biosyst. Eng., 46(4), 317–331.
32.  Statistical Center of Iran. (2019). Statistical year book of Kermanshah Province. Retrieved from http://nashriatamari.Kermanshah.ir
33.  Subhaktiyasa, P. (2024). PLS-SEM for multivariate analysis: A practical guide to educational research using SmartPLS. EduLine: J. Educ. Learn. Innov., 4(3), 353–365.
34.  Suur-Inkeroinen, H., & Seppänen, M. (2011). Effects of emotions and self-efficacy on technology usage behavior. In Proceedings of PICMET '11: Technology Management in the Energy-Smart World (pp. 625–630).
35.  Suvittawat, A. (2024). Investigating farmers’ perceptions of drone technology in Thailand: Exploring expectations, product quality, perceived value, and adoption in agriculture. Agriculture, 4(12), 2183.
36.  Taoufik, Y. A. M. (2020). Factors affecting precision agriculture adoption: A systematic literature review. J. Econ., 8(2), 103–121.
37.  Taylor, S. E. (2011). Social support: A review. In H. S. Friedman (Ed.), The Oxford handbook of health psychology (pp. 189–214). Oxford University Press.
38.  Thurow, A. P., Boggess, W. G., Moss, C. B., & Holt, J. (1997). An ex ante approach to modeling investment in new technology. In D. D. Parker & Y. Tsur (Eds.), Decentralization and coordination of water resource management (pp. 317–338). Springer.
39.  Tsaur, S.-H., Luoh, H.-F., & Syue, S.-S. (2015). Positive emotions and behavioral intentions of customers in full-service restaurants: Does aesthetic labor matter? Int. J. Hosp. Manag., 51, 115–126.
40.  Umucu, E., Castruita, Y., Rios, R. A., Lo, C., Wang, A., Grenawalt, T. A., Yasuoka, M., & Brooks, J. M. (2022). Service-connected disability and happiness in student veterans: A parallel mediation study of PERMA. Rehabil. Couns. Bull., 67(3), 167–176.
41.  Valizadeh, N., Bijani, M., Abbasi, E., & Ganguly, S. (2018). The role of time perspective in predicting Iranian farmers’ participatory-based water conservation attitude and behavior. J. Hum. Behav. Soc. Environ., 28, 992–1010.
42.  Waris, I., Ali, R., Nayyar, A., Baz, M., Liu, R., & Hameed, I. (2022). An empirical evaluation of customers’ adoption of drone food delivery services: An extended technology acceptance model. Sustainability, 14(5), 2922.
43.  Wijesinha-Bettoni, R., & Mouillé, B. (2019). The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res., 96, 139–149.
44.  Yu-Hsin, C., Kuei-Kuei, L., Ming-Chung, Y., & Ya-Ting, H. (2020). The influence of patents on purchase intention through the technology acceptance model. Int. J. Innov. Technol. Manag., 17(4), 2050024.
45.  Zhang, P., & Li, N. (2005). The importance of affective quality. Commun. ACM, 48(9), 105–108.
46.  Zobeidi, T., Yaghoubi, J., & Yazdanpanah, M. (2022). Exploring the motivational roots of farmers’ adaptation to climate change-induced water stress through incentives or norms. Sci. Rep., 12, 1–10.
47.  Zola, N., Yusuf, A., & Firman, F. (2022). Konsep social cognitive career theory. JRTI (J. Ris. Tindakan Indones.), 7(1), 24–28.

Articles in Press, Accepted Manuscript
Available Online from 18 October 2025