In Press, Pre-Proof Version

A Well-Being Perspective on Drone Adoption by Iranian Potato Farmers

Mojtaba Shekarbaygi¹, Shahpar Geravandi^{1*}, and Farahnaz Rostami¹

Abstract

1

2

3

Traditional technology acceptance models primarily focus on behavioral factors, with limited 4 exploration of well-being perspectives. This study examines the role of technology well-5 being, based on the PERMA framework, in shaping the intention and adoption of drone 6 technology among potato farmers in western Iran. Using a descriptive-correlational survey 7 design, path analysis of a systematic sample of 234 farmers revealed that intention, 8 engagement, social relationships, meaning, and accomplishments significantly influence 9 drone adoption, with path coefficients of 0.85 for intention and 0.38 for acceptance. Positive 10 emotions, however, showed no significant effect. These findings highlight the critical role of 11 well-being in technology acceptance, offering novel insights for precision agriculture. The 12 results suggest that policymakers should prioritize persuasive strategies to enhance farmers' 13 intentions, beyond merely promoting technology use. As one of the first studies to apply 14 well-being theory to agricultural technology adoption, this research lays a foundation for 15 future investigations, emphasizing technology well-being as a key driver of agricultural 16

18 **Keywords**: Drone technology, PERMA framework, Potato farmers, Precision agriculture, Technology well-being.

2021 **1.Introduction**

innovation.

17

22

23

24

25

26

27

28

29

30

31

32

Agricultural drones have transformed modern farming by enhancing productivity, operational efficiency, and sustainability (Rachmawati et al., 2021). Through precise field monitoring and targeted operations, drones can improve clean crop production and bolster food security (Shouji et al., 2021). In the potato trade, particularly the commercialization of sweet potatoes, these advancements play a pivotal role in improving farmers' livelihoods and fostering rural economic development (Oyebamiji et al., 2024). Factors such as farm size, access to credit, market proximity, and information availability significantly influence farmers' engagement in this trade. Given the heavy reliance on pesticides in potato cultivation, drone-based spraying offers a sustainable alternative, reducing pesticide use by 30–65% while maintaining or enhancing pest control efficacy (Patil et al., 2024). Consequently, drones represent a transformative tool for sustainable potato production and increased market competitiveness.

¹ Department of Agricultural Extension and Education, Faculty of Agriculture, Razi University, Kermanshah, Islamic Republic of Iran.

^{*}Corresponding author; e-mail: sh.geravandil@gmail.com

33	Potatoes, recognized globally for their high yield per unit area, are a critical food source,
34	producing more dry matter and protein per hectare than many major crops and serving as a
35	nutrient-rich alternative to grains (Wijesinha-Bettoni & Mouillé, 2019; Devaux et al., 2014;
36	Gustavsen, 2021). Unlike grains, their limited trade volume makes them a reliable option for
37	food security, particularly in politically sensitive markets (Devaux et al., 2014). In Iran, the
38	potato industry has seen significant growth from 1978 to 2023, with harvested areas
39	expanding from 57,000 to 143,000 hectares (3% annual growth) and production rising from
40	735,000 to 5.5 million tons (5.5% annual growth), increasing yields from 8.12 to over 43 tons
41	per hectare. In Kermanshah Province, Iran's fourth-largest potato producer, 6.3% of irrigated
42	land is dedicated to potato farming, significantly contributing to local agricultural revenues.
43	However, challenges such as excessive agrochemical use, climate change, outdated
44	equipment, and declining water resources hinder productivity.
45	To meet rising demand and ensure food security, increasing potato production through
46	innovative solutions like drone technology is essential. Drones enhance weed and pest
47	management, boosting yields while promoting economic and environmental sustainability.
48	Despite available infrastructure, drone adoption remains low in Kermanshah County, a key
49	production hub (Fig. 1). Existing research has not sufficiently explored the reasons for this
50	low adoption, particularly through a psychological lens. Traditional technology adoption
51	models, such as the Technology Acceptance Model (TAM) and the Unified Theory of
52	Acceptance and Use of Technology (UTAUT), focus on factors like perceived usefulness and
53	ease of use but often overlook psychological and well-being dimensions critical to rural
54	agricultural contexts (Dissanayake et al., 2022; Blut et al., 2022). Factors such as trust in
55	technology, prior experience, and risk attitudes, which significantly influence adoption, are
56	underrepresented in these models (Dai & Cheng, 2022). This study addresses a critical gap in
57	the literature by examining drone technology adoption among potato farmers in Kermanshah
58	Province through the lens of well-being theory, specifically the PERMA model (Seligman,
59	2018). Unlike behavioral frameworks such as the Technology Acceptance Model (TAM) and
60	the Theory of Planned Behavior (TPB), which focus primarily on utilitarian factors and have
61	been widely applied in agricultural contexts, the PERMA model emphasizes psychological
62	well-being, an underexplored dimension in agricultural behavioral economics. By employing
63	PERMA independently, this research provides a novel theoretical framework that captures
64	farmers' psychological and professional motivations, offering a distinct perspective beyond
65	traditional models. Practically, the findings deliver actionable insights for policymakers and

In Press, Pre-Proof Version

agricultural stakeholders to promote drone adoption, enhancing farm productivity and sustainability while fostering farmers' well-being.

Fig 1. Drone Technology in potato farming (Kermanshah, Iran).

69 70 71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

68

66

67

2. The PERMA Model and Technology Well-Being

Traditional technology adoption models, such as the Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and Use of Technology (UTAUT), emphasize technical factors like perceived usefulness, ease of use, and performance expectations (Rouidi et al., 2022). However, these models often neglect psychological and well-being dimensions, limiting their applicability in complex settings like rural agricultural communities. Psychological and behavioral barriers significantly hinder technology adoption, particularly for innovations like drones (Lee et al., 2025). Integrating psychological frameworks with traditional models is thus essential for a comprehensive understanding of adoption dynamics. To address this gap, this study adopts the PERMA model (Seligman, 2018), a foundational framework in positive psychology, as its primary lens to explore farmers' acceptance of drone technology in potato field spraying in Kermanshah Province, Iran. PERMA comprises five dimensions—Positive Emotion, Engagement, Relationships, Meaning, Accomplishment—which collectively offer a holistic perspective on how well-being shapes technology adoption (Ascenso et al., 2018). Unlike TAM and UTAUT, which prioritize utilitarian factors, PERMA captures farmers' psychological and professional motivations, making it particularly suited for rural agricultural contexts (Lenzenweger, 2004). Positive Emotions, such as happiness and hope, are central to well-being and can foster technology adoption by creating favorable user experiences (Chisale & Phiri, 2022). Research shows that positive experiences with technology evoke emotions that enhance adoption intentions (Müller et al., 2016; Şahin et al., 2022). Engagement, defined as deep involvement in meaningful activities, is influenced by user experience quality, including

In Press, Pre-Proof Version

93	challenge and perceived control (Lubis et al., 2019). Higher engagement is linked to stronger
94	adoption intentions (Hussain et al., 2019). Relationships, a key PERMA component,
95	emphasize social connections that facilitate adoption through collaboration and shared
96	learning (Taylor, 2011). Meaning, reflecting purpose and life satisfaction, encourages
97	positive attitudes toward technology use (Barachi et al., 2022). Accomplishment, tied to goal
98	achievement, enhances motivation and adoption intent by fostering a sense of mastery
99	(Umucu et al., 2022).
100	While PERMA is the primary framework, this study draws on insights from other behavioral
101	models applied in Iran's agricultural sector to provide context. The Theory of Planned
102	Behavior (TPB) highlights attitudes, norms, and control as adoption predictors (Valizadeh et
103	al 2018) The Value-Belief-Norm (VRN) theory underscores environmental values (Zobeidi

- 103 al., 2018). The value-Belief-Norm (VBN) theory underscores environmental values (Zobeidi
- et al., 2022), while Social-Cognitive Theory (SCT) emphasizes self-efficacy (Zola et al., 104
- 2022). By employing PERMA independently while acknowledging these frameworks, this 105
- study offers a novel theoretical contribution, integrating well-being into technology adoption 106
- research (Ryan et al., 2018). This approach not only enriches the theoretical discourse but 107
- 108 also provides practical insights for promoting drone adoption in agriculture.
- Based on this framework, the following hypotheses are proposed (see Figure 2): 109
- H1: Positive emotions toward drone technology significantly enhance farmers' 110 intention to adopt it. 111
- H2: Engagement with drone technology positively influences farmers' intention to 112 adopt it. 113
 - H3: Social relationships in the context of drone technology positively impact farmers' intention to adopt it.
- H4: Meaning derived from drone technology is positively linked to farmers' intention 116 to adopt it. 117
- H5: Accomplishments in using drone technology strengthen farmers' intention to 118 adopt it. 119
- **H6**: The intention to use drone technology directly influences its actual adoption. 120

121

114

115

122

In Press, Pre-Proof Version

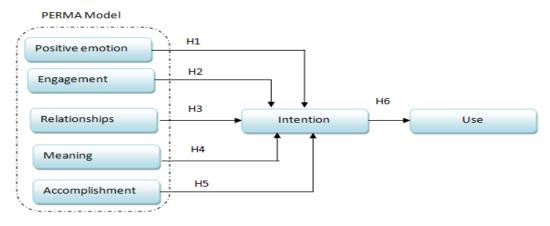


Fig. 2. PERMA-Based Model of Drone Technology Adoption.

3. Materials and Methods

3.1. Study Area

This study was conducted in Kermanshah Province, western Iran (Fig. 3), a kay agricultural region and Iran's fourth-largest potato producer. The province features a diverse climate, ranging from humid to semi-arid, with an average annual rainfall of 320 mm (1992–2014). In 2023, potato cultivation spanned 6,000–7,000 hectares, yielding approximately 350,000 tons, underscoring its critical role in food security and the rural economy, which relies heavily on agriculture and livestock. Predominant potato varieties include Agria, Marfona, Banba, and Burren. With an average yield of 50 tons/ha, the adoption of drone technology for precision spraying could enhance yields to 65–70 tons/ha, improving productivity and sustainability.

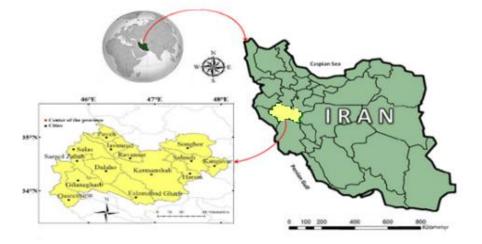


Fig 3. Locations of Kermanshah Province, Iran.

Research Design

This quantitative study employed a descriptive survey design to examine the model of drone technology acceptance in potato field spraying. Although technology acceptance has

In Press, Pre-Proof Version

140	conventionally been explored through behavioral frameworks, there is a paucity of research
141	examining its adoption through the lens of well-being theory.
142 143	Sampling Method
144	A systematic sampling approach was employed to select potato farmers in Kermanshah
145	Province. This method proves particularly effective when the population is organized
146	physically or in a listed format, and simple random sampling is impractical or labeling all
147	units is challenging (Hankin et al., 2019). The study targeted the entire population of 596
148	potato farmers, as documented by the Statistical Center of Iran (2019). Based on Krejcie and
149	Morgan's (1970) sample size table, a sample of 234 farmers was determined (n = 234).
150	Notably, the study focused exclusively on farmers without prior experience using drones on
151	their farms, positioning the research within an ex-ante analytical framework (Thurow et al.,
152	<mark>1997).</mark>
153	
154	Data Analysis Method
155	Data were collected through a self-administered questionnaire comprising two sections: (1)
156	Demographics and Professional Characteristics (14 items) and (2) PERMA Model-Based
157	Assessment (21 items), adapted from Ascenso et al. (2018), to evaluate farmers' perceptions
158	of drone technology. The instrument's validity was established through review by a panel of
159	experts. A pilot study involving 30 farmers from Miandarband, Kuzaran, and Sarabniloofar—
160	villages excluded from the final sample—was conducted to assess reliability. Study variables
161	and composite reliability (CR) coefficients are presented in Table 1.
162	Data analysis was performed using SPSS 16 and SmartPLS 3. Preliminary checks for
163	normality, outliers, and multicollinearity were conducted to ensure data validity, with all
164	metrics meeting acceptable thresholds, consistent with Subhaktiyasa (2024). Partial Least
165	Squares Structural Equation Modeling (PLS-SEM) was employed due to its robustness in
166	analyzing complex models and suitability for smaller sample sizes (Hair & Alamer., 2022).
167	The conceptual model incorporated latent variables (reflective and/or formative constructs),
168	with relationships examined using SmartPLS 3.
169	The measurement model's validity and reliability were evaluated through composite
170	reliability (CR), convergent validity (Average Variance Extracted, AVE), and discriminant
171	validity (Fornell-Larcker criterion), all of which met established benchmarks (Hair &
172	Alamer., 2022). The structural model was assessed by examining path coefficients, R2 values,
173	and the significance of relationships via a bootstrapping procedure.

In Press, Pre-Proof Version

Table 1. Survey Measures and corresponding questionnaire items.

Measure	Description	Number	CD
Measure	Description		CR
		of items	
Positive emotion	Feelings of happiness, hope, and enjoyment in	3	0.87
(Pe)	using drone technology (1= very low, 5= very		
	high)		
Engagement	Deep involvement in meaningful and challenging	5	0.87
(En)	activities (1= very low, 5= very high)		
Relationships	User's understanding and long-term commitment	4	0.95
(Re)	to drone technology (1= very low, 5= very high)		
Meaning	Sense of purpose and career significance derived	3	0.91
(Me)	from drone technology use (1 = strongly disagree,		
	5= strongly agree)		
Accomplishment	Farmers' sense of success in achieving	3	0.84
(Ac)	professional goals through drone technology (1 =		
	strongly disagree, 5= strongly agree)		
Intention	Farmer's decision and willingness to adopt drone	3	0.94
(In)	technology (1= strongly disagree, 5 = strongly		
	agree)		
Use	Practical application of drones in farm	4	0.81
(U)	management (1= strongly disagree, 5= strongly		
. ,	agree)		

4. Findings

4.1. Demographic and Socioeconomic Characteristics

The respondents in this study had a mean age of 46.2 years (SD = 15.3), ranging from 24 to 70 years, with 96.6% male and 3.4% female. Most respondents (89.7%) were married, with an average household size of four members. Educationally, 50.2% held a bachelor's degree or higher, 30.9% had a diploma, and 19.9% had education below the diploma level. Occupationally, 90.6% were farmers, with 93.6% self-employed and 6.4% employed. The mean agricultural experience was 22.5 years (SD = 11.24), while potato cultivation experience averaged 2.5 years (SD = 2.52).

The average income from potato cultivation was 652.4 million Iranian Rials per hectare (SD = 9.36). Most farmers (93.6%) were native to Kermanshah Province, with a negligible proportion being non-native. Respondents owned an average of 8.28 hectares of total land, including 4.37 hectares of dry land, 4.17 hectares of irrigated land, and 1.43 hectares of potato fields. Over 90% of land was personally owned, with a small fraction leased or jointly owned. The average pesticide cost for pest and weed control was 17.45 million Iranian Rials per hectare.

4.2. Evaluation of the Drone Technology Acceptance Model

Confirmatory factor analysis (CFA) was conducted to evaluate the fit, validity, and reliability of the PERMA-based model for drone technology acceptance in potato field spraying. The model assessed dimensions including need, positive emotions, engagement, social relationships, meaning, accomplishments, and frequency of drone use. After removing one

In Press, Pre-Proof Version

indicator from social relationships (Re5), the model demonstrated a good fit. Goodness-of-fit indices, correlation coefficients, and summary results are presented in Tables 2, 3, and 4.

Table 2. Goodness-of-Fit Indices for the PERMA-Based Drone Technology Acceptance Model.

Fit index	SRMR	D_LS	D_G	NFI	RMS_Theta
Recommended value	< 0.10	> 0.05	> 0.05	> 0.80	≤ 0.12
Estimated value	0.097	3.07	2.114	0.85	0.11

All factor loadings were statistically significant (p < 0.05), confirming unidimensionality. Composite reliability (CR > 0.80) demonstrated strong internal consistency, while convergent validity (AVE > 0.50) indicated that the indicators effectively captured variance in their respective constructs. Discriminant validity was also confirmed, as the square root of AVE for each construct exceeded its correlations with other constructs, ensuring construct distinctiveness (Table 3).

Table 3. Factor Loadings and Reliability Metrics for the PERMA-Based Drone Acceptance Model.

Latent variables	Observed variables	factor	t	CR	AVI
(Measures)	(Items)	loadings			
		(β)			
Pe	Pe1	0.60	**5.11	0.87	0.70
	Pe2	0.92	**69.56		
	Pe3	0.94	**114.69		
	En1	0.85	**64.64		
En	En2	0.84	**39.58		
	En3	0.81	**20.67	0.87	0.59
	En4	0.80	**21.27		
	En5	0.43	**4.09		
	Me1	0.94	**153.35		
Me	Me2	0.93	**76.26	0.95	0.87
	Me3	0.91	**98.60		
	Re1	0.91	**80.30		
Re	Re2	0.89	**49.40	0.91	0.78
	Re3	0.87	**44.02		
	Re4	0.22	*2.02		
	Ac1	0.96	**138.48		
Ac	Ac2	0.90	**65.32	0.84	0.61
	Ac3	0.89	**39.17		
In	In1	0.92	**76.15		
	In2	0.92	**82.12	0.94	0.85
	In3	0.93	**86.76		
U	U1	0.89	**76.26		
	U2	0.87	**98.60	0.81	0.65
	U3	0.74	**44.02		
	U4	0.71	**69.56		

Based on the results presented above, the proposed measurement model for drone technology acceptance in potato field spraying, comprising seven primary latent constructs, is a suitable framework for conducting analyses in this study.

^{**} Significantly at 1% error level and * significantly at 5% error level.

In Press, Pre-Proof Version

Table 4. Discriminant Validity of the PERMA-Based Drone Acceptance Model (Fornell–Larcker Criterion).

11011).							
	Ac	En	In	Me	Pe	Re	\mathbf{U}
Ac	0.91						
En	0.76	0.86					
In	0.87	0.82	0.92				
Me	0.87	0.76	0.89	0.93			
Pe	0.54	0.47	0.52	0.51	0.83		
Re	0.72	0.71	0.78	0.77	0.68	0.78	
U	0.51	0.57	0.62	0.61	0.43	0.65	1

Note: The numbers of the table diameter are root AVE and the numbers below diameter are the correlation coefficients between the variables.

Following validation of the measurement model through confirmatory factor analysis, path analysis was employed to test the research hypotheses within the proposed conceptual framework for drone technology acceptance in potato field spraying. The path model, including standardized factor loadings (Fig. 4), significant path coefficients (Fig. 5), and a summary of results (Table 5), is presented to illustrate the structural relationships in the drone technology acceptance model.

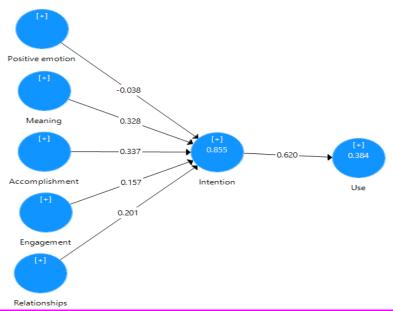


Fig 4: PERMA-Based Drone Acceptance Model with Standardized Factor Loadings.

In Press, Pre-Proof Version

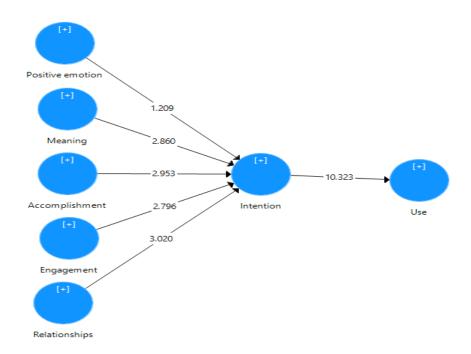


Fig 5: PERMA-Based Drone Acceptance Model with Significant Path Coefficients.

The path analysis (Table 5) revealed that intention, engagement, social relationships, meaning, and accomplishments significantly influenced drone technology acceptance in potato field spraying (p < 0.01), while positive emotions showed no significant effect. The coefficient of determination (R^2) indicated that these factors strongly predicted acceptance ($R^2 = 0.38$) and intention to use drones ($R^2 = 0.85$). Effect size analysis (f^2) highlighted a strong effect of intention, moderate effects of engagement, social relationships, meaning, and accomplishments, and a weak effect of positive emotions. The high predictive relevance (Q^2) confirmed the model's effectiveness in forecasting both intention and acceptance, supporting its applicability for policy development to enhance drone adoption.

Table 5: Path Analysis Results for the PERMA-Based Drone Acceptance Model.

Latent variables		Dire	ct effect	Indire	ct effect	Total	l effect	2 <i>f</i>	R2	Q2
		t	β	t	β	t	β			
Use of drone	Intention	0.62	**10.32	-	-	-	-	0.62		
technology	Positive emotion	-	-	-0.02	1.21	-0.02	1.21	-		
	Engagement	-	-	0.09	**2.84	0.09	**2.84	-		
	Relationship	-	-	0.12	**2.74	0.12	**2.74	-	0.38	0.37
	Meaning	-	-	0.20	**2.71	0.20	**2.71	-		
	Accomplishment	-	-	0.20	**2.89	0.20	**2.89	-		
	Positive emotion	-0.03	1.20	-	-	-0.03	1.20	0.01		
	Engagement	0.15	**2.79	-	-	0.15	**2.79	0.04		
Intention	Relationship	0.20	**3.02	-	-	0.20	**3.02	0.08	0.85	0.72
	Meaning	0.32	**2.86	-	-	0.32	**2.86	0.09		
	Accomplishment	0.33	**2.95	-	-	0.33	**2.95	0.17		

** Significantly at 1% error level.

246	5. Discussion
247	This study demonstrates that intention, engagement, social relationships, meaning, and
248	accomplishments significantly influence drone adoption for pesticide spraying in potato
249	farming, while positive emotion have no significant effect. These findings position
250	technology well-being, as conceptualized through the PERMA framework, as a pivotal
251	construct in technology adoption, extending beyond traditional models like Technology
252	Acceptance Model (TAM), which focus primarily on perceived usefulness and ease of use.
253	By employing the PERMA framework independently, this research offers a novel theoretical
254	contribution, extending the application of technology well-being to emerging technologies
255	like drones.
256	Engagement is a key driver of drone adoption, with farmers more likely to adopt drones when
257	perceived as useful, efficient, and beneficial to their agricultural practices. This aligns with
258	prior studies (Lee et al., 2020; Taoufik, 2020), which emphasize perceived value and
259	expectancy as core determinants of adoption intentions. In traditional farming systems,
260	repetitive and physically demanding tasks often lead to fatigue and reduced motivation
261	among farmers, including potato growers. The introduction of drone technology can
262	transform agriculture into a more engaging and meaningful activity, enhancing productivity
263	and sustainability (Nguyen et al., 2024). These findings are globally relevant, as engagement-
264	driven strategies can promote drone adoption in precision agriculture across diverse regions.
265	Social relationships significantly shape adoption, both directly and indirectly, through
266	supportive networks and peer influence. Research (Irzan et al., 2021; Koelle et al., 2018)
267	highlights that social connections foster technology adoption by creating enabling
268	environments. This is particularly relevant in collectivistic agricultural societies, such as
269	those in South Asia, Latin America, and rural Europe, where peer adoption and knowledge
270	sharing reduce perceived risks (Antolini et al., 2018; Pilay et al., 2020). Moreover, social
271	networks and brand identification (Stephan et al., 2010; Tien-chi et al., 2022) reinforce
272	positive attitudes toward technology across diverse cultural contexts, enhancing the global
273	applicability of these findings.
274	The role of meaning underscores that farmers who align drone use with their professional
275	aspirations are more inclined to adopt the technology. This is consistent with prior research
276	(Rao, 1996; Yu-Hsin et al., 2020), which highlights goal alignment as a key driver of
277	technology acceptance. Drones, by providing precise data and enabling rapid decision-
278	making, enhance farmers' knowledge and control over their fields, thereby fostering a sense

279	of purpose and professional advancement (McCarthy et al., 2024). This pattern is applicable
280	to farming communities worldwide, where technologies that align with professional goals car
281	drive adoption.
282	Accomplishments, particularly economic benefits, strongly predict drone adoption, as farmers
283	prioritize technologies that increase yields, reduce costs, and enhance profitability. This is
284	supported by studies (Chavdhari et al., 2001; Teyagrajan & Vasantakomar, 2009; Zhang et
285	al., 2015), which emphasize economic incentives as universal drivers of technology adoption.
286	Drones facilitate precise pesticide application, improving productivity and product quality,
287	which in turn enhances job satisfaction and a sense of achievement among farmers (Olson &
288	Anderson, 2021). These findings are relevant to both smallholder and large-scale farming
289	systems globally.
290	Contrary to studies emphasizing the role of positive emotions in technology adoption
291	(Mansoor et al., 2020; Suur-Inkeroinen et al., 2011; Tsaur et al., 2015), this research found no
292	significant emotional influence. Farmers without direct drone experience may struggle to
293	associate positive emotions like joy or hope with the technology, as supported by recent
294	evidence (Suvittawat, 2024). Instead, perceived usefulness, economic benefits, and social
295	influence are prioritized, particularly in resource-limited contexts (Acıbuca, 2024; Waris et
296	al., 2022; Zhang & Li, 2005). In wealthier agricultural systems, such as those in Europe or
297	North America, where financial risks are lower, positive emotions may play a more
298	prominent role (Djamasbi et al., 2010).
299	Despite the strong path coefficient (0.85) between intention and adoption, practical barriers
300	such as cost, training, and access—though not assessed in this study—may hinder adoption
301	These barriers are prevalent globally, particularly in developing nations with limited
302	infrastructure. Future research should explore solutions like public-private partnerships or
303	subsidies to enhance drone adoption in regions such as South Asia, Africa, and Latin
304	America. By contextualizing these findings within a global framework, this study advances
305	the literature on agricultural technology adoption. The integration of well-being constructs
306	through the PERMA framework provides a novel perspective, informing policies and
307	practices for both smallholder and large-scale farming systems worldwide.
308	
309 310	
311	
312	
313	

In Press, Pre-Proof Version

314 6. Implications

6.1 Theoretical Implications

The findings provide empirical validation for drone technology adoption in potato farming, confirming the relevance of psychological well-being in adoption models. By employing the PERMA framework independently, this study offers a novel theoretical contribution, extending the application of technology well-being to emerging technologies like drones. The limited use of the PERMA model in prior technology adoption research underscores the study's role in expanding the literature by incorporating diverse perspectives on acceptance and influential factors. Incorporating technology well-being into adoption frameworks broadens the theoretical scope and highlights its critical role in shaping farmers' intentions and behaviors.

6.2 Practical and Policy Implications

Policymakers often prioritize psychological factors in designing technology adoption strategies. This study highlights the equal importance of technology well-being. To enhance drone acceptance, planners should incorporate well-being principles into adoption programs, ensuring both psychological and well-being factors are addressed in policy frameworks. This approach can strengthen strategies for promoting sustainable agricultural innovations in rural settings.

7. Limitations

This study has several limitations. First, the limited literature on technology well-being restricted comparative analyses, constraining the depth of discussion despite contributing to the study's originality. Second, reliance on quantitative methods may not fully capture the complexities of technology well-being. Future research should employ qualitative approaches to explore nuanced dimensions and refine the PERMA framework. Third, as many potato growers lacked direct drone experience, the study focused on the prospective role of technology well-being. Retrospective studies comparing early adopters and new users could enhance model validity. Fourth, the focus on farmers without prior drone experience may limit the generalizability of findings. Future studies should adopt ex-post or mixed methods to compare perceptions and behaviors of farmers with and without drone experience. Fifth, the potential mediating role of financial concerns in the relationship between positive emotions and adoption behavior was not empirically tested. Future research could address this gap through mediation analysis. Finally, due to time and budgetary constraints, this study

In Press, Pre-Proof Version

348	examined only the PERMA framework independently, without integration with established
349	models like TAM or UTAUT. Future research should combine PERMA with these
350	frameworks to provide a more comprehensive understanding of technology adoption.
351	
352	8. Conclusion
353	Technology well-being, though a novel concept, emerges as a critical factor in drone
354	technology adoption. While prior agricultural studies have largely overlooked this aspect, this
355	research underscores its pivotal role in shaping acceptance behaviors. Incorporating
356	technology well-being into existing adoption models could enhance their relevance and
357	applicability. Financial barriers remain a significant obstacle to drone adoption, particularly
358	in developing countries. Government interventions, such as financial support and policy
359	incentives, are essential to promote adoption. Addressing these challenges will strengthen the
360	technology well-being model and lay a foundation for future research in this evolving field.
361	
362	References
363	1. Acıbuca, V. (2024). The possibility of using unmanned aerial vehicles in agricultural
364	activities in Turkey. Egypt. J. Agron., 46(1), 39–49.
365	2. Antolini, L. S., Scare, R. F., & Dias, A. (2015). Adoption of precision agriculture
366	technologies by farmers: A systematic literature review and proposition of an
367	integrated conceptual framework. In <i>IFAMA World Conference</i> (pp. 14–17).
368	3. Barachi, M. E., Abu Salim, T., Nyadzayo, M. W., Mathew, S. S., Badewi, A., &
369	Amankwah-Amoah, J. (2022). The relationship between citizen readiness and the
370	intention to continuously use smart city services: Mediating effects of satisfaction and
371	discomfort. Technol. Soc., 74(c).
372	4. Blut, M., Chong, A., Tsigna, Z., & Venkatesh, V. (2022). Meta-analysis of the unified
373	theory of acceptance and use of technology (UTAUT): Challenging its validity and
374	charting a research agenda in the red ocean. J. Assoc. Inf. Syst., 23, 13-35.
375	5. Chisale, E., & Phiri, F. M. (2022). PERMA model and mental health practice. Asian
376	J. Pharm. Nurs. Med. Sci., 10(2), 21–24.
377	6. Dai, Q., & Cheng, K. (2022). What drives the adoption of agricultural green
378	production technologies? An extension of TAM in agriculture. Sustainability, 14(21),
379	14457.
380	7. Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for sustainable global food
381	security. <i>Potato Res.</i> , 57, 185–199.

382	8.]	Dissanayake, C., Jayathilake, W., Wickramasuriya, H., Dissanayake, U.,
383		Kopiyawattage, K., & Wasala, W. (2022). Theories and models of technology
384		adoption in agricultural sector. Hum. Behav. Emerg. Technol., (5), 1-15.
385	9.]	Djamasbi, S., Strong, D. M., & Dishaw, M. T. (2010). Affect and acceptance:
386		Examining the effects of positive mood on the technology acceptance model. Decis.
387		Support Syst., 48(2), 383–394.
388	10.	Gustavsen, G. (2021). Sustainability and potato consumption. Potato Res., 64, 403-
389	2	413.
390	11.	Hair, J., & Alamer, A. (2022). Partial least squares structural equation modeling
391		(PLS-SEM) in second language and education research: Guidelines using an applied
392		example. Res. Methods Appl. Linguist., 1(3), 1–16.
393	12.	Hankin, D., Mohr, M., & Newman, K. (2019). Systematic sampling. In Sampling
394		Theory: For the Ecological and Natural Resource Sciences. Oxford University Press.
395	13.]	Hussain, S., Qazi, S., Ahmed, R. R., Vveinhardt, J., & Streimikiene, D. (2019).
396		Innovative user engagement and playfulness on adoption intentions of technological
397	i	products: Evidence from SEM-based multivariate approach. Econ. ResEkon. Istraz.,
398		32(1), 555–577.
399	14.	Koelle, M., Boll, S., Olsson, T., Williamson, J. R., Profita, H., Kane, S., & Mitchell,
400		R. (2018). (Un)Acceptable!?!: Re-thinking the social acceptability of emerging
401		technologies. In Proceedings of the 2018 CHI Conference on Human Factors in
402		Computing Systems (pp. 1–8).
403	15.	Lee, A., Ramasamy, R., & Subbarao, A. (2025). Understanding psychosocial barriers
404		to healthcare technology adoption: A review of TAM technology acceptance model
405		and unified theory of acceptance and use of technology and UTAUT frameworks.
406		Healthcare, 13, 250–262.
407	16.]	Lenzenweger, M. F. (2004). [Review of the book Authentic happiness: Using the new
408		positive psychology to realize your potential for lasting fulfillment]. Am. J. Psychol.,
409		161(5), 936–937.
410	17.	Li, W., Clark, B., Taylor, J. A., Kendall, H., Jones, G., Li, Z., & Frewer, L. J.
411		(2020). A hybrid modelling approach to understanding adoption of precision
412		agriculture technologies in Chinese cropping systems. Comput. Electron. Agric., 172,
413		105305.

414	18. Lubis, M., Khairiansyah, A., Jafar, Q., & Almaarif, A. (2019). Exploring the user
415	engagement factors in computer-mediated communication. J. Phys.: Conf. Ser.,
416	1235(1), 012040.
417	19. Mansoor, M., Syed, F. T., & Awan, T. M. (2020). Positive emotions as underlying
418	mechanisms between customer gratitude and behavioral intentions. J. Adv. Bus. Stud.,
419	6(1), 9–20.
420	20. McCarthy, C., Nyoni, Y., Kachamba, D., Banda, L., Moyo, B., Chisambi, C., Banfill,
421	J., & Hoshino, B. (2023). Can drones help smallholder farmers improve agriculture
422	efficiencies and reduce food insecurity in Sub-Saharan Africa? Local perceptions
423	from Malawi. Agriculture, 13(5), 1075.
424	21. Müller, L. J., Mekler, E. D., & Opwis, K. (2016). Hedonic enjoyment and personal
425	expressiveness in positive user experiences. In Proceedings of the 2016 CHI
426	Conference on Human Factors in Computing Systems (pp. 3166-3177).
427	22. Nguyen, T., Truong, T., & Nguyen, M. (2024). Examining farmers' intention to use
428	drone applications in agricultural production. J. Int. Econ. Manag., 24(3), 59-76.
429	23. Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote
430	sensors, imagery processing, and their applications in agriculture. Agron. J., 113(2),
431	20595.
432	24. Patil, A., Mailapalli, D., & Singh, P. (2024). Drone technology reshaping agriculture:
433	A meta-review and bibliometric analysis on fertilizer and pesticide deployment. J.
434	Biosyst. Eng., 49, 382–398.
435	25. Rachmawati, S., Syah Putra, A., Priyatama, A., Parulian, D., Katarina, D., Tri
436	Habibie, M., & Valentino, V. H. (2021). Application of drone technology for mapping
437	and monitoring of corn agricultural land. In 8th International Conference on ICT for
438	Smart Society: Digital Twin for Smart Society, ICISS 2021 - Proceeding.
439	26. Rao, V. M. (1996). Agricultural development with a human face: Experiences and
440	prospects. Econ. Polit. Wkly., 31(26), 50-62.
441	27. Rouidi, M., Elmajid, E., Hamdoune, A., Choujtani, K., & Chati, A. (2022). TAM-
442	UTAUT and the acceptance of remote healthcare technologies by healthcare
443	professionals: A systematic review. <i>Inform. Med. Unlocked</i> , 32, 1–14.
444	28. Ryan, C., Bergin, M., & Wells, J. (2018). Theoretical perspectives of adherence to
445	web-based interventions: A scoping review. Int. J. Behav. Med. 25, 17–29.

- 29. Şahin, F., Doğan, E., Okur, M. R., & Sahin, Y. (2022). Emotional outcomes of e-446 learning adoption during compulsory online education. Educ. Inf. Technol., 27, 7827— 447 7849. 448 30. Seligman, M. (2018). PERMA and the building blocks of well-being. J. Posit. 449 Psychol., 13, 333–335. 450 31. Shouji, C., Yu, S. H., Kang, Y. H., Choi, Y., Dafsari, R. A., & Lee, J. (2021). 451 Experimental analysis of the downwash airflow created by a single rotor blade in 452 agricultural drones. J. Biosyst. Eng., 46(4), 317–331. 453 32. Statistical Center of Iran. (2019). Statistical year book of Kermanshah Province. 454 Retrieved from http://nashriatamari.Kermanshah.ir 455 33. Subhaktiyasa, P. (2024). PLS-SEM for multivariate analysis: A practical guide to 456 educational research using SmartPLS. EduLine: J. Educ. Learn. Innov., 4(3), 353-457 365. 458 34. Suur-Inkeroinen, H., & Seppänen, M. (2011). Effects of emotions and self-efficacy on 459 technology usage behavior. In *Proceedings of PICMET '11: Technology Management* 460 in the Energy-Smart World (pp. 625–630). 461 35. Suvittawat, A. (2024). Investigating farmers' perceptions of drone technology in 462 Thailand: Exploring expectations, product quality, perceived value, and adoption in 463 agriculture. Agriculture, 4(12), 2183. 464 36. Taoufik, Y. A. M. (2020). Factors affecting precision agriculture adoption: A 465 systematic literature review. J. Econ., 8(2), 103–121. 466 37. Taylor, S. E. (2011). Social support: A review. In H. S. Friedman (Ed.), The Oxford 467 handbook of health psychology (pp. 189–214). Oxford University Press. 468 38. Thurow, A. P., Boggess, W. G., Moss, C. B., & Holt, J. (1997). An ex ante approach 469 to modeling investment in new technology. In D. D. Parker & Y. Tsur (Eds.), 470 471 Decentralization and coordination of water resource management (pp. 317–338). Springer. 472 39. Tsaur, S.-H., Luoh, H.-F., & Syue, S.-S. (2015). Positive emotions and behavioral 473 474 intentions of customers in full-service restaurants: Does aesthetic labor matter? Int. J. Hosp. Manag., 51, 115–126. 475
- 476 40. Umucu, E., Castruita, Y., Rios, R. A., Lo, C., Wang, A., Grenawalt, T. A., Yasuoka, M., & Brooks, J. M. (2022). Service-connected disability and happiness in student

478	veterans: A parallel mediation study of PERMA. Rehabil. Couns. Bull., 67(3), 167-
479	<mark>176.</mark>
480	41. Valizadeh, N., Bijani, M., Abbasi, E., & Ganguly, S. (2018). The role of time
481	perspective in predicting Iranian farmers' participatory-based water conservation
482	attitude and behavior. J. Hum. Behav. Soc. Environ., 28, 992–1010.
483	42. Waris, I., Ali, R., Nayyar, A., Baz, M., Liu, R., & Hameed, I. (2022). An empirica
484	evaluation of customers' adoption of drone food delivery services: An extended
485	technology acceptance model. Sustainability, 14(5), 2922.
486	43. Wijesinha-Bettoni, R., & Mouillé, B. (2019). The contribution of potatoes to globa
487	food security, nutrition and healthy diets. Am. J. Potato Res., 96, 139-149.
488	44. Yu-Hsin, C., Kuei-Kuei, L., Ming-Chung, Y., & Ya-Ting, H. (2020). The influence o
489	patents on purchase intention through the technology acceptance model. Int. J. Innov
490	Technol. Manag., 17(4), 2050024.
491	45. Zhang, P., & Li, N. (2005). The importance of affective quality. Commun. ACM
492	48(9), 105–108.
493	46. Zobeidi, T., Yaghoubi, J., & Yazdanpanah, M. (2022). Exploring the motivationa
494	roots of farmers' adaptation to climate change-induced water stress through incentive
495	or norms. Sci. Rep., 12, 1–10.
496	47. Zola, N., Yusuf, A., & Firman, F. (2022). Konsep social cognitive career theory. JRT
497	(J. Ris. Tindakan Indones.), 7(1), 24–28.
498	