
Journal of Agricultural Science and Technology (JAST), 28(5) 

In Press, Pre-Proof Version 
 

1 

 

A Well-Being Perspective on Drone Adoption by Iranian Potato Farmers 1 

Mojtaba Shekarbaygi1, Shahpar Geravandi1*, and Farahnaz Rostami1 2 

Abstract 3 

Traditional technology acceptance models primarily focus on behavioral factors, with limited 4 

exploration of well-being perspectives. This study examines the role of technology well-5 

being, based on the PERMA framework, in shaping the intention and adoption of drone 6 

technology among potato farmers in western Iran. Using a descriptive-correlational survey 7 

design, path analysis of a systematic sample of 234 farmers revealed that intention, 8 

engagement, social relationships, meaning, and accomplishments significantly influence 9 

drone adoption, with path coefficients of 0.85 for intention and 0.38 for acceptance. Positive 10 

emotions, however, showed no significant effect. These findings highlight the critical role of 11 

well-being in technology acceptance, offering novel insights for precision agriculture. The 12 

results suggest that policymakers should prioritize persuasive strategies to enhance farmers’ 13 

intentions, beyond merely promoting technology use. As one of the first studies to apply 14 

well-being theory to agricultural technology adoption, this research lays a foundation for 15 

future investigations, emphasizing technology well-being as a key driver of agricultural 16 

innovation. 17 

Keywords: Drone technology, PERMA framework, Potato farmers, Precision agriculture, 18 

Technology well-being. 19 
 20 

1.Introduction 21 

Agricultural drones have transformed modern farming by enhancing productivity, operational 22 

efficiency, and sustainability (Rachmawati et al., 2021). Through precise field monitoring 23 

and targeted operations, drones can improve clean crop production and bolster food security 24 

(Shouji et al., 2021). In the potato trade, particularly the commercialization of sweet potatoes, 25 

these advancements play a pivotal role in improving farmers’ livelihoods and fostering rural 26 

economic development (Oyebamiji et al., 2024). Factors such as farm size, access to credit, 27 

market proximity, and information availability significantly influence farmers’ engagement in 28 

this trade. Given the heavy reliance on pesticides in potato cultivation, drone-based spraying 29 

offers a sustainable alternative, reducing pesticide use by 30–65% while maintaining or 30 

enhancing pest control efficacy (Patil et al., 2024). Consequently, drones represent a 31 

transformative tool for sustainable potato production and increased market competitiveness. 32 
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Potatoes, recognized globally for their high yield per unit area, are a critical food source, 33 

producing more dry matter and protein per hectare than many major crops and serving as a 34 

nutrient-rich alternative to grains (Wijesinha-Bettoni & Mouillé, 2019; Devaux et al., 2014; 35 

Gustavsen, 2021). Unlike grains, their limited trade volume makes them a reliable option for 36 

food security, particularly in politically sensitive markets (Devaux et al., 2014). In Iran, the 37 

potato industry has seen significant growth from 1978 to 2023, with harvested areas 38 

expanding from 57,000 to 143,000 hectares (3% annual growth) and production rising from 39 

735,000 to 5.5 million tons (5.5% annual growth), increasing yields from 8.12 to over 43 tons 40 

per hectare. In Kermanshah Province, Iran’s fourth-largest potato producer, 6.3% of irrigated 41 

land is dedicated to potato farming, significantly contributing to local agricultural revenues. 42 

However, challenges such as excessive agrochemical use, climate change, outdated 43 

equipment, and declining water resources hinder productivity. 44 

To meet rising demand and ensure food security, increasing potato production through 45 

innovative solutions like drone technology is essential. Drones enhance weed and pest 46 

management, boosting yields while promoting economic and environmental sustainability. 47 

Despite available infrastructure, drone adoption remains low in Kermanshah County, a key 48 

production hub (Fig. 1). Existing research has not sufficiently explored the reasons for this 49 

low adoption, particularly through a psychological lens. Traditional technology adoption 50 

models, such as the Technology Acceptance Model (TAM) and the Unified Theory of 51 

Acceptance and Use of Technology (UTAUT), focus on factors like perceived usefulness and 52 

ease of use but often overlook psychological and well-being dimensions critical to rural 53 

agricultural contexts (Dissanayake et al., 2022; Blut et al., 2022). Factors such as trust in 54 

technology, prior experience, and risk attitudes, which significantly influence adoption, are 55 

underrepresented in these models (Dai & Cheng, 2022). This study addresses a critical gap in 56 

the literature by examining drone technology adoption among potato farmers in Kermanshah 57 

Province through the lens of well-being theory, specifically the PERMA model (Seligman, 58 

2018). Unlike behavioral frameworks such as the Technology Acceptance Model (TAM) and 59 

the Theory of Planned Behavior (TPB), which focus primarily on utilitarian factors and have 60 

been widely applied in agricultural contexts, the PERMA model emphasizes psychological 61 

well-being, an underexplored dimension in agricultural behavioral economics. By employing 62 

PERMA independently, this research provides a novel theoretical framework that captures 63 

farmers’ psychological and professional motivations, offering a distinct perspective beyond 64 

traditional models. Practically, the findings deliver actionable insights for policymakers and 65 
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agricultural stakeholders to promote drone adoption, enhancing farm productivity and 66 

sustainability while fostering farmers’ well-being. 67 

 68 

Fig 1. Drone Technology in potato farming (Kermanshah, Iran). 69 

 70 
2.The PERMA Model and Technology Well-Being 71 

Traditional technology adoption models, such as the Technology Acceptance Model (TAM) 72 

and the Unified Theory of Acceptance and Use of Technology (UTAUT), emphasize 73 

technical factors like perceived usefulness, ease of use, and performance expectations (Rouidi 74 

et al., 2022). However, these models often neglect psychological and well-being dimensions, 75 

limiting their applicability in complex settings like rural agricultural communities. 76 

Psychological and behavioral barriers significantly hinder technology adoption, particularly 77 

for innovations like drones (Lee et al., 2025). Integrating psychological frameworks with 78 

traditional models is thus essential for a comprehensive understanding of adoption dynamics. 79 

To address this gap, this study adopts the PERMA model (Seligman, 2018), a foundational 80 

framework in positive psychology, as its primary lens to explore farmers’ acceptance of 81 

drone technology in potato field spraying in Kermanshah Province, Iran. PERMA comprises 82 

five dimensions—Positive Emotion, Engagement, Relationships, Meaning, and 83 

Accomplishment—which collectively offer a holistic perspective on how well-being shapes 84 

technology adoption (Ascenso et al., 2018). Unlike TAM and UTAUT, which prioritize 85 

utilitarian factors, PERMA captures farmers’ psychological and professional motivations, 86 

making it particularly suited for rural agricultural contexts (Lenzenweger, 2004). 87 

Positive Emotions, such as happiness and hope, are central to well-being and can foster 88 

technology adoption by creating favorable user experiences (Chisale & Phiri, 2022). 89 

Research shows that positive experiences with technology evoke emotions that enhance 90 

adoption intentions (Müller et al., 2016; Şahin et al., 2022). Engagement, defined as deep 91 

involvement in meaningful activities, is influenced by user experience quality, including 92 
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challenge and perceived control (Lubis et al., 2019). Higher engagement is linked to stronger 93 

adoption intentions (Hussain et al., 2019). Relationships, a key PERMA component, 94 

emphasize social connections that facilitate adoption through collaboration and shared 95 

learning (Taylor, 2011). Meaning, reflecting purpose and life satisfaction, encourages 96 

positive attitudes toward technology use (Barachi et al., 2022). Accomplishment, tied to goal 97 

achievement, enhances motivation and adoption intent by fostering a sense of mastery 98 

(Umucu et al., 2022). 99 

While PERMA is the primary framework, this study draws on insights from other behavioral 100 

models applied in Iran’s agricultural sector to provide context. The Theory of Planned 101 

Behavior (TPB) highlights attitudes, norms, and control as adoption predictors (Valizadeh et 102 

al., 2018). The Value-Belief-Norm (VBN) theory underscores environmental values (Zobeidi 103 

et al., 2022), while Social-Cognitive Theory (SCT) emphasizes self-efficacy (Zola et al., 104 

2022). By employing PERMA independently while acknowledging these frameworks, this 105 

study offers a novel theoretical contribution, integrating well-being into technology adoption 106 

research (Ryan et al., 2018). This approach not only enriches the theoretical discourse but 107 

also provides practical insights for promoting drone adoption in agriculture. 108 

Based on this framework, the following hypotheses are proposed (see Figure 2): 109 

• H1: Positive emotions toward drone technology significantly enhance farmers’ 110 

intention to adopt it. 111 

• H2: Engagement with drone technology positively influences farmers’ intention to 112 

adopt it. 113 

• H3: Social relationships in the context of drone technology positively impact farmers’ 114 

intention to adopt it. 115 

• H4: Meaning derived from drone technology is positively linked to farmers’ intention 116 

to adopt it. 117 

• H5: Accomplishments in using drone technology strengthen farmers’ intention to 118 

adopt it. 119 

• H6: The intention to use drone technology directly influences its actual adoption. 120 

 121 

 122 
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 123 

Fig. 2. PERMA-Based Model of Drone Technology Adoption. 124 

3. Materials and Methods 125 

3.1. Study Area 126 

This study was conducted in Kermanshah Province, western Iran (Fig. 3), a kay agricultural 127 

region and Iran’s fourth-largest potato producer. The province features a diverse climate, 128 

ranging from humid to semi-arid, with an average annual rainfall of 320 mm (1992–2014). In 129 

2023, potato cultivation spanned 6,000–7,000 hectares, yielding approximately 350,000 tons, 130 

underscoring its critical role in food security and the rural economy, which relies heavily on 131 

agriculture and livestock. Predominant potato varieties include Agria, Marfona, Banba, and 132 

Burren. With an average yield of 50 tons/ha, the adoption of drone technology for precision 133 

spraying could enhance yields to 65–70 tons/ha, improving productivity and sustainability. 134 

 135 

Fig 3. Locations of Kermanshah Province, Iran. 136 

Research Design 137 

This quantitative study employed a descriptive survey design to examine the model of drone 138 

technology acceptance in potato field spraying. Although technology acceptance has 139 
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conventionally been explored through behavioral frameworks, there is a paucity of research 140 

examining its adoption through the lens of well-being theory.  141 

 142 
Sampling Method 143 

A systematic sampling approach was employed to select potato farmers in Kermanshah 144 

Province. This method proves particularly effective when the population is organized 145 

physically or in a listed format, and simple random sampling is impractical or labeling all 146 

units is challenging (Hankin et al., 2019). The study targeted the entire population of 596 147 

potato farmers, as documented by the Statistical Center of Iran (2019). Based on Krejcie and 148 

Morgan’s (1970) sample size table, a sample of 234 farmers was determined (n = 234). 149 

Notably, the study focused exclusively on farmers without prior experience using drones on 150 

their farms, positioning the research within an ex-ante analytical framework (Thurow et al., 151 

1997). 152 

 153 
Data Analysis Method 154 

Data were collected through a self-administered questionnaire comprising two sections: (1) 155 

Demographics and Professional Characteristics (14 items) and (2) PERMA Model-Based 156 

Assessment (21 items), adapted from Ascenso et al. (2018), to evaluate farmers’ perceptions 157 

of drone technology. The instrument’s validity was established through review by a panel of 158 

experts. A pilot study involving 30 farmers from Miandarband, Kuzaran, and Sarabniloofar—159 

villages excluded from the final sample—was conducted to assess reliability. Study variables 160 

and composite reliability (CR) coefficients are presented in Table 1. 161 

Data analysis was performed using SPSS 16 and SmartPLS 3. Preliminary checks for 162 

normality, outliers, and multicollinearity were conducted to ensure data validity, with all 163 

metrics meeting acceptable thresholds, consistent with Subhaktiyasa (2024). Partial Least 164 

Squares Structural Equation Modeling (PLS-SEM) was employed due to its robustness in 165 

analyzing complex models and suitability for smaller sample sizes (Hair & Alamer., 2022). 166 

The conceptual model incorporated latent variables (reflective and/or formative constructs), 167 

with relationships examined using SmartPLS 3. 168 

The measurement model’s validity and reliability were evaluated through composite 169 

reliability (CR), convergent validity (Average Variance Extracted, AVE), and discriminant 170 

validity (Fornell-Larcker criterion), all of which met established benchmarks (Hair & 171 

Alamer., 2022). The structural model was assessed by examining path coefficients, R² values, 172 

and the significance of relationships via a bootstrapping procedure.  173 
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Table 1. Survey Measures and corresponding questionnaire items. 174 
Measure 

 

Description Number 

of items 

CR 

Positive emotion 

(Pe) 

Feelings of happiness, hope, and enjoyment in 

using drone technology (1= very low, 5= very 

high)  

3 0.87 

Engagement 

(En) 

Deep involvement in meaningful and challenging 

activities (1= very low, 5= very high)  

5 0.87 

Relationships 

(Re) 

User’s understanding and long-term commitment 

to drone technology (1= very low, 5= very high)  

4 0.95 

Meaning 

(Me) 

Sense of purpose and career significance derived 

from drone technology use (1 = strongly disagree, 

5= strongly agree)  

3 0.91 

Accomplishment 

(Ac) 

Farmers’ sense of success in achieving 

professional goals through drone technology (1 = 

strongly disagree, 5= strongly agree)  

3 0.84 

Intention 

(In) 

Farmer’s decision and willingness to adopt drone 

technology (1= strongly disagree, 5 = strongly 

agree)  

3 0.94 

Use  

(U)  

Practical application of drones in farm 

management (1= strongly disagree, 5= strongly 

agree)  

4 0.81 

 175 

4. Findings 176 

4.1. Demographic and Socioeconomic Characteristics 177 

The respondents in this study had a mean age of 46.2 years (SD = 15.3), ranging from 24 to 178 

70 years, with 96.6% male and 3.4% female. Most respondents (89.7%) were married, with 179 

an average household size of four members. Educationally, 50.2% held a bachelor’s degree or 180 

higher, 30.9% had a diploma, and 19.9% had education below the diploma level. 181 

Occupationally, 90.6% were farmers, with 93.6% self-employed and 6.4% employed. The 182 

mean agricultural experience was 22.5 years (SD = 11.24), while potato cultivation 183 

experience averaged 2.5 years (SD = 2.52). 184 

The average income from potato cultivation was 652.4 million Iranian Rials per hectare (SD 185 

= 21.61), with cultivation costs averaging 216.0 million Iranian Rials per hectare (SD = 9.36). 186 

Most farmers (93.6%) were native to Kermanshah Province, with a negligible proportion 187 

being non-native. Respondents owned an average of 8.28 hectares of total land, including 188 

4.37 hectares of dry land, 4.17 hectares of irrigated land, and 1.43 hectares of potato fields. 189 

Over 90% of land was personally owned, with a small fraction leased or jointly owned. The 190 

average pesticide cost for pest and weed control was 17.45 million Iranian Rials per hectare. 191 

 192 
4.2. Evaluation of the Drone Technology Acceptance Model 193 

Confirmatory factor analysis (CFA) was conducted to evaluate the fit, validity, and reliability 194 

of the PERMA-based model for drone technology acceptance in potato field spraying. The 195 

model assessed dimensions including need, positive emotions, engagement, social 196 

relationships, meaning, accomplishments, and frequency of drone use. After removing one 197 
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indicator from social relationships (Re5), the model demonstrated a good fit. Goodness-of-fit 198 

indices, correlation coefficients, and summary results are presented in Tables 2, 3, and 4. 199 

 200 
Table 2. Goodness-of-Fit Indices for the PERMA-Based Drone Technology Acceptance Model. 201 

Fit index SRMR D_LS D_G NFI RMS_Theta 

Recommended value < 0.10 > 0.05 > 0.05 > 0.80 ≤ 0.12 

Estimated value 0.097 3.07 2.114 0.85 0.11 

 202 
All factor loadings were statistically significant (p < 0.05), confirming unidimensionality. 203 

Composite reliability (CR > 0.80) demonstrated strong internal consistency, while convergent 204 

validity (AVE > 0.50) indicated that the indicators effectively captured variance in their 205 

respective constructs. Discriminant validity was also confirmed, as the square root of AVE 206 

for each construct exceeded its correlations with other constructs, ensuring construct 207 

distinctiveness (Table 3). 208 

Table 3. Factor Loadings and Reliability Metrics for the PERMA-Based Drone Acceptance Model. 209 
AVE CR t factor 

loadings  

(β) 

Observed variables  

(Items) 

 Latent variables  

 (Measures) 

 

0.70 0.87  **5.11 0.60 Pe1  Pe 

    **69.56 0.92 Pe2 

   **114.69 0.94 Pe3 

   **64.64 0.85 En1  

 En    **39.58 0.84 En2 

0.59 0.87  **20.67 0.81 En3 

   **21.27 0.80 En4 

   **4.09 0.43 En5 

   **153.35 0.94 Me1  

Me 0.87 0.95  **76.26 0.93 Me2 

   **98.60 0.91 Me3 

   **80.30 0.91 Re1  

 Re 0.78 0.91  **49.40 0.89 Re2 

   **44.02 0.87 Re3 

   *2.02 0.22 Re4 

   **138.48 0.96 Ac1  

 Ac 0.61 0.84  **65.32 0.90 Ac2 

   **39.17 0.89 Ac3 

   **76.15 0.92 In1  In 

0.85 0.94  **82.12 0.92 In2 

   **86.76 0.93 In3 

   **76.26 0.89 U1  U 

0.65 0.81  **98.60 0.87 U2 

   **44.02 0.74 U3 

   **69.56 0.71 U4 

** Significantly at 1% error level and * significantly at 5% error level. 210 

Based on the results presented above, the proposed measurement model for drone technology 211 

acceptance in potato field spraying, comprising seven primary latent constructs, is a suitable 212 

framework for conducting analyses in this study. 213 

 214 

 215 

 216 
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Table 4. Discriminant Validity of the PERMA-Based Drone Acceptance Model (Fornell–Larcker 217 
Criterion). 218 

U Re Pe Me In En Ac  

      0.91 Ac 

     0.86 0.76 En 

    0.92 0.82 0.87 In 

   0.93 0.89 0.76 0.87 Me 

  0.83 0.51 0.52 0.47 0.54 Pe 

 0.78 0.68 0.77 0.78 0.71 0.72 Re 

1 0.65 0.43 0.61 0.62 0.57 0.51 U 

Note: The numbers of the table diameter are root AVE and the numbers below diameter are the correlation 219 
coefficients between the variables. 220 
 221 
Following validation of the measurement model through confirmatory factor analysis, path 222 

analysis was employed to test the research hypotheses within the proposed conceptual 223 

framework for drone technology acceptance in potato field spraying. The path model, 224 

including standardized factor loadings (Fig. 4), significant path coefficients (Fig. 5), and a 225 

summary of results (Table 5), is presented to illustrate the structural relationships in the drone 226 

technology acceptance model. 227 

 228 
Fig 4: PERMA-Based Drone Acceptance Model with Standardized Factor Loadings. 229 
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 230 
 231 

Fig 5: PERMA-Based Drone Acceptance Model with Significant Path Coefficients. 232 

The path analysis (Table 5) revealed that intention, engagement, social relationships, 233 

meaning, and accomplishments significantly influenced drone technology acceptance in 234 

potato field spraying (p < 0.01), while positive emotions showed no significant effect. The 235 

coefficient of determination (R²) indicated that these factors strongly predicted acceptance 236 

(R² = 0.38) and intention to use drones (R² = 0.85). Effect size analysis (ƒ²) highlighted a 237 

strong effect of intention, moderate effects of engagement, social relationships, meaning, and 238 

accomplishments, and a weak effect of positive emotions. The high predictive relevance (Q²) 239 

confirmed the model’s effectiveness in forecasting both intention and acceptance, supporting 240 

its applicability for policy development to enhance drone adoption. 241 

 242 
Table 5: Path Analysis Results for the PERMA-Based Drone Acceptance Model. 243 

Latent variables  Direct effect Indirect effect Total effect 2ƒ R2 Q2 

  t β t β t β 

Use of drone 

technology 

Intention 0.62  **10.32 - - - - 0.62  

 

 

0.38 

 

 

 

0.37 

Positive emotion - - -0.02 1.21 -0.02 1.21 - 

Engagement - - 0.09  **2.84 0.09  **2.84 - 

Relationship - - 0.12  **2.74 0.12  **2.74 - 

Meaning - - 0.20  **2.71 0.20  **2.71 - 

Accomplishment - - 0.20  **2.89 0.20  **2.89 - 

 

 

Intention 

Positive emotion -0.03 1.20 - - -0.03 1.20 0.01  

 

0.85 

 

 

0.72 

Engagement 0.15  **2.79 - - 0.15  **2.79 0.04 

Relationship 0.20  **3.02 - - 0.20  **3.02 0.08 

Meaning 0.32  **2.86 - - 0.32  **2.86 0.09 

Accomplishment 0.33  **2.95 - - 0.33  **2.95 0.17 

** Significantly at 1% error level . 244 

 245 
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5. Discussion 246 

This study demonstrates that intention, engagement, social relationships, meaning, and 247 

accomplishments significantly influence drone adoption for pesticide spraying in potato 248 

farming, while positive emotion have no significant effect. These findings position 249 

technology well-being, as conceptualized through the PERMA framework, as a pivotal 250 

construct in technology adoption, extending beyond traditional models like Technology 251 

Acceptance Model (TAM), which focus primarily on perceived usefulness and ease of use. 252 

By employing the PERMA framework independently, this research offers a novel theoretical 253 

contribution, extending the application of technology well-being to emerging technologies 254 

like drones. 255 

Engagement is a key driver of drone adoption, with farmers more likely to adopt drones when 256 

perceived as useful, efficient, and beneficial to their agricultural practices. This aligns with 257 

prior studies (Lee et al., 2020; Taoufik, 2020), which emphasize perceived value and 258 

expectancy as core determinants of adoption intentions. In traditional farming systems, 259 

repetitive and physically demanding tasks often lead to fatigue and reduced motivation 260 

among farmers, including potato growers. The introduction of drone technology can 261 

transform agriculture into a more engaging and meaningful activity, enhancing productivity 262 

and sustainability (Nguyen et al., 2024). These findings are globally relevant, as engagement-263 

driven strategies can promote drone adoption in precision agriculture across diverse regions. 264 

Social relationships significantly shape adoption, both directly and indirectly, through 265 

supportive networks and peer influence. Research (Irzan et al., 2021; Koelle et al., 2018) 266 

highlights that social connections foster technology adoption by creating enabling 267 

environments. This is particularly relevant in collectivistic agricultural societies, such as 268 

those in South Asia, Latin America, and rural Europe, where peer adoption and knowledge 269 

sharing reduce perceived risks (Antolini et al., 2018; Pilay et al., 2020). Moreover, social 270 

networks and brand identification (Stephan et al., 2010; Tien-chi et al., 2022) reinforce 271 

positive attitudes toward technology across diverse cultural contexts, enhancing the global 272 

applicability of these findings. 273 

The role of meaning underscores that farmers who align drone use with their professional 274 

aspirations are more inclined to adopt the technology. This is consistent with prior research 275 

(Rao, 1996; Yu-Hsin et al., 2020), which highlights goal alignment as a key driver of 276 

technology acceptance. Drones, by providing precise data and enabling rapid decision-277 

making, enhance farmers’ knowledge and control over their fields, thereby fostering a sense 278 
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of purpose and professional advancement (McCarthy et al., 2024). This pattern is applicable 279 

to farming communities worldwide, where technologies that align with professional goals can 280 

drive adoption. 281 

Accomplishments, particularly economic benefits, strongly predict drone adoption, as farmers 282 

prioritize technologies that increase yields, reduce costs, and enhance profitability. This is 283 

supported by studies (Chavdhari et al., 2001; Teyagrajan & Vasantakomar, 2009; Zhang et 284 

al., 2015), which emphasize economic incentives as universal drivers of technology adoption. 285 

Drones facilitate precise pesticide application, improving productivity and product quality, 286 

which in turn enhances job satisfaction and a sense of achievement among farmers (Olson & 287 

Anderson, 2021). These findings are relevant to both smallholder and large-scale farming 288 

systems globally. 289 

Contrary to studies emphasizing the role of positive emotions in technology adoption 290 

(Mansoor et al., 2020; Suur-Inkeroinen et al., 2011; Tsaur et al., 2015), this research found no 291 

significant emotional influence. Farmers without direct drone experience may struggle to 292 

associate positive emotions like joy or hope with the technology, as supported by recent 293 

evidence (Suvittawat, 2024). Instead, perceived usefulness, economic benefits, and social 294 

influence are prioritized, particularly in resource-limited contexts (Acıbuca, 2024; Waris et 295 

al., 2022; Zhang & Li, 2005). In wealthier agricultural systems, such as those in Europe or 296 

North America, where financial risks are lower, positive emotions may play a more 297 

prominent role (Djamasbi et al., 2010). 298 

Despite the strong path coefficient (0.85) between intention and adoption, practical barriers 299 

such as cost, training, and access—though not assessed in this study—may hinder adoption. 300 

These barriers are prevalent globally, particularly in developing nations with limited 301 

infrastructure. Future research should explore solutions like public-private partnerships or 302 

subsidies to enhance drone adoption in regions such as South Asia, Africa, and Latin 303 

America. By contextualizing these findings within a global framework, this study advances 304 

the literature on agricultural technology adoption. The integration of well-being constructs 305 

through the PERMA framework provides a novel perspective, informing policies and 306 

practices for both smallholder and large-scale farming systems worldwide. 307 

 308 
 309 
 310 

 311 
 312 

 313 
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6. Implications 314 

6.1 Theoretical Implications 315 

The findings provide empirical validation for drone technology adoption in potato farming, 316 

confirming the relevance of psychological well-being in adoption models. By employing the 317 

PERMA framework independently, this study offers a novel theoretical contribution, 318 

extending the application of technology well-being to emerging technologies like drones. The 319 

limited use of the PERMA model in prior technology adoption research underscores the 320 

study’s role in expanding the literature by incorporating diverse perspectives on acceptance 321 

and influential factors. Incorporating technology well-being into adoption frameworks 322 

broadens the theoretical scope and highlights its critical role in shaping farmers’ intentions 323 

and behaviors. 324 

 325 

6.2 Practical and Policy Implications 326 

Policymakers often prioritize psychological factors in designing technology adoption 327 

strategies. This study highlights the equal importance of technology well-being. To enhance 328 

drone acceptance, planners should incorporate well-being principles into adoption programs, 329 

ensuring both psychological and well-being factors are addressed in policy frameworks. This 330 

approach can strengthen strategies for promoting sustainable agricultural innovations in rural 331 

settings. 332 

 333 
7. Limitations 334 

This study has several limitations. First, the limited literature on technology well-being 335 

restricted comparative analyses, constraining the depth of discussion despite contributing to 336 

the study’s originality. Second, reliance on quantitative methods may not fully capture the 337 

complexities of technology well-being. Future research should employ qualitative approaches 338 

to explore nuanced dimensions and refine the PERMA framework. Third, as many potato 339 

growers lacked direct drone experience, the study focused on the prospective role of 340 

technology well-being. Retrospective studies comparing early adopters and new users could 341 

enhance model validity. Fourth, the focus on farmers without prior drone experience may 342 

limit the generalizability of findings. Future studies should adopt ex-post or mixed methods 343 

to compare perceptions and behaviors of farmers with and without drone experience. Fifth, 344 

the potential mediating role of financial concerns in the relationship between positive 345 

emotions and adoption behavior was not empirically tested. Future research could address 346 

this gap through mediation analysis. Finally, due to time and budgetary constraints, this study 347 
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examined only the PERMA framework independently, without integration with established 348 

models like TAM or UTAUT. Future research should combine PERMA with these 349 

frameworks to provide a more comprehensive understanding of technology adoption. 350 

 351 

8. Conclusion 352 

Technology well-being, though a novel concept, emerges as a critical factor in drone 353 

technology adoption. While prior agricultural studies have largely overlooked this aspect, this 354 

research underscores its pivotal role in shaping acceptance behaviors. Incorporating 355 

technology well-being into existing adoption models could enhance their relevance and 356 

applicability. Financial barriers remain a significant obstacle to drone adoption, particularly 357 

in developing countries. Government interventions, such as financial support and policy 358 

incentives, are essential to promote adoption. Addressing these challenges will strengthen the 359 

technology well-being model and lay a foundation for future research in this evolving field. 360 

 361 
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