Optimizing Inputs Consumption and Reducing Pollution through Environmental Efficiency Analysis: An Approach to Achieving Sustainable Agricultural Production

Authors
1 Department of Agricultural Economics, Faculty of Agriculture Engineering andRural Development, Agricultural Sciences and Natural Resources University of Khuzestan,Mollasani, Iran
2 Department of Agricultural Economics, Faculty of Agriculture Engineering and RuralDevelopment, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani,Iran
3 MSc Student of Department of Agricultural Economics, Faculty of AgricultureEngineering and Rural Development, Agricultural Sciences and Natural Resources University ofKhuzestan, Mollasani, Iran
Abstract
While agriculture relies on inputs to produce desired outputs; however, it also generates unintended environmental impacts. Given rising global food demand, reducing environmental impacts through production cuts, is often impractical. Thus, this study employs Data Envelopment Analysis with Material Balance Principle model to evaluate rice farmers' eco-efficiency. Additionally, it examines optimal input allocation with and without environmental consideration. The study focuses on rice farmers in the Gotvand region of Khuzestan Province, Iran. The primary data were collected through 153 questionnaires administered to local rice farmers in 2022. The findings revealed that the average technical efficiency of rice farmers in Gotvand region is 87% under conventional efficiency measures, but this drops to 73% when environmental pollution is factored in. To achieve optimal efficiency, inefficient Decision-Making Units must reduce their carbon dioxide emissions by an average of 8%. To improve eco-efficiency, the study identifies different optimization patterns: substantial reductions are needed for nitrogen fertilizer (-41.1%), fuel (-38.5%), and machinery operation hours (-33.6%), while increases are recommended for animal manure (612%), potassium fertilizer (6.25%), and phosphate fertilizer (2.7%). Therefore, key contributors to the inefficiency among the studied producers include inadequate animal manure application, excessive nitrogen fertilizer use, diesel fuel consumption, and machine operation hours. Notably, electricity usage has a minimal impact on inefficiency, with no significant changes detected. These findings underscore the necessity of optimized input management, especially chemical fertilizer reduction , to enhance both economic and environmental sustainability in rice farming.

Keywords

Subjects


Abdollahi, O., & Faryadi, M. (2010). Legal challenges facing Iran’s Department of Environment. Env. Sc., 7(4).143-180.
Angulo-Meza, L. G.-A., M.; Iriarte, A.; Rebolledo-Leiva, R.; Soares de Mello, J.C. A. (2019). A multiobjective DEA modelto assess the eco-efficiency of agricultural practices within the CF + DEA method. Comput. Electron. Agric., 161, 151-161.
Arabi, B., Doraisamy, S. M., Emrouznejad, A., & Khoshroo, A. (2017). Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index. Ann. Oper. Res., 255, 221-239.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci., 30(9), 1078–1092.
Biswas, B., Mallick, B., Roy, A., & Sultana, Z. (2021). Impact of agriculture extension services on technical efficiency of rural paddy farmers in southwest Bangladesh. Environ. Chall., 5, 100261.
Carberry, P. S., Liang, W.-l., Twomlow, S., Holzworth, D. P., Dimes, J. P., McClelland, T., Huth, N. I., Chen, F., Hochman, Z., & Keating, B. A. (2013). Scope for improved eco-efficiency varies among diverse cropping systems. PNAS., 110(21), 8381-8386.
Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. Eur. J. Oper. Res., 3(4), 339.
Cecchini, L., Romagnoli, F., Chiorri, M., & Torquati, B. (2023). Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector. Agriculture, 13(5), 1107.
Coelli, T., Lauwers, L., & Van Huylenbroeck, G. (2007). Environmental efficiency measurement and the materials balance condition. J. Prod. Anal., 28, 3-12.
Cui, S., & Wang, Z. (2023). The impact and transmission mechanisms of financial agglomeration on eco-efficiency: Evidence from the organization for economic co-operation and development economies. J. Clean. Prod., 392: 136219
Dashti, G., Mohammadpour, Z., & Ghahremanzadeh, M. (2020). Evaluating the relationship between economic and environmental efficiency in Iranian agriculture sector. J. Agric. Sci. Sustain. Prod., 30(4), 199-211.
Deng, X., & Gibson, J. (2019). Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China. Technol. Forecast. Soc. Change, 144, 394-400.
Ekins, P. (2005). Eco-efficiency: motives, drivers and economic implications. J. Ind. Econ., 9(4), 12-14.
Emrouznejad, A., Marra, M., Yang, G. L., & & Michali, M. (2023). Eco-efficiency considering NetZero and data envelopment analysis: a critical literature review. IMA J. Manage. Math., 34(4), 599-632.
Färe, R., & Grosskopf, S. (2010). Directional distance functions and slacks-based measures of efficiency. Eur. J. Oper. Res., 200(1), 320-322. https://doi.org/https://doi.org/10.1016/j.ejor .2009.01.031
Farrel, M. (1959). The measurement of productive efficiency. JR Stat. Soc. A. Gen., 125, 252-267.
Field, B. C., & Field, M. K. (2017). Environmental economics: an introduction. McGraw-Hill.
Field, B. C., & Olewiler, N. D. (2005). Environmental Economics (Updated 2nd Canadian ed.). In: Toronto: McGraw-Hill Ryerson Limited.
Gancone, A., Pubule, J., Rosa, M., & Blumberga, D. (2017). Evaluation of agriculture eco-efficiency in Latvia. Energy Procedia, 128, 309-315.
Huang, M., Zeng, L., Liu, C., Li, X., & Wang, H. (2022). Research on the eco-efficiency of rice production and its improvement path: a case study from China. Int. J. Environ. Res. Public Health., 19(14), 8645.
Javadi, A., Ghahremanzadeh, M., Sassi, M., Javanbakht, O., & Hayati, B. (2023). Economic evaluation of the climate changes on food security in Iran: application of CGE model. Theor. Appl. Climatol., 151(1-2), 567-585.
Khan, M., Mobin, M., Abbas, Z., & Alamri, S. (2018). Fertilizers and their contaminants in soils, surface and groundwater. Encycl. Anthrop., 5, 225-240.
Kotrlik, J., & Higgins, C. (2001). Organizational research: Determining appropriate sample size in survey research appropriate sample size in survey research. Inf. Technol. Learn. Perform. J., 19(1), 43.
Kouchaki-Penchah, H., Alizadeh, M. R., & Karbalaei Aghamolki, M. T. (2023). Measuring eco-efficiency of rice cropping systems in Iran: An integrated economic and environmental approach. Sustain. Energy Technol. Assess., 57, 103281. https://doi.org/https://doi.org/10.1016/j.seta.2023.103281
Lauwers, L. (2009). Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecol. Econ., 68(6), 1605-1614. https://doi.org/https://doi.org/10.1016/ j.ecolecon.2008.08.022
Li, F. J., Dong, S. C., & Li, F. (2012). A system dynamics model for analyzing the eco-agriculture system with policy recommendations. Ecol. Model., 227, 34-45.
Lin, E. Y.-Y., Chen, P.-Y., & Chen, C.-C. (2013). Measuring the environmental efficiency of countries: A directional distance function metafrontier approach. Journal of environmental management, 119, 134-142.
Maghrebi, M., Noori, R., Bhattarai, R., Mundher Yaseen, Z., Tang, Q., Al‐Ansari, N., Danandeh Mehr, A., Karbassi, A., Omidvar, J., & Farnoush, H. (2020). Iran's agriculture in the anthropocene. Earth's Future, 8(9), e2020EF001547.
Mardani Najafabadi, M., & Ashktorab, N. (2023). Mathematical programming approaches for modeling a sustainable cropping pattern under uncertainty: a case study in Southern Iran. Environ. Dev. Sustain., 25(9), 9731-9755.
Mardani Najafabadi, M., Rastegaripour, F., Yavari, F., & Ahani, E. (2023). Material balance principle to estimate eco-efficiency of saffron-producers aiming reduction in greenhouse gas emissions in Iran. Front. Environ. Sci., 11, 1184458.
Mohammadi, A., Venkatesh, G., Eskandari, S., & Rafiee, S. (2022). Eco-efficiency analysis to improve environmental performance of wheat production. Agriculture, 12 (7): 1031.
Mohidem, N. A., Hashim, N., Shamsudin, R., & Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), 741.
Molaei, M., Hesari, N., & Javanbakht, O. (2017). The estimation of input-oriented environmental efficiency of agricultural products (case study: environmental efficiency of rice production). Agr. Econ., 11(2), 157-172.
Naghavi, S., Ebrahimi-Khusfi, Z., & Mirzaei, A. (2022). Decoupling pollution-agricultural growth and predicting climate change impacts on decoupling index using Bayesian network in different climatic regions. Environ. Sci. Pollut. Res. 1-18.
Pang, J., Chen, X., Zhang, Z., & Li, H. (2016). Measuring eco-efficiency of agriculture in China. Sustainability, 8(4), 398.
Patel, V., Saravaiya, S., Arvadia, M., Chaudhari, J., Ahir, M., & Bhalerao, R. (2010). Effect of conjunctive use of bio-organics and inorganic fertilizers on growth, yield and economics of Rabi fennel (Foeniculum vulgare Mill.) under south Gujarat conditions. Int. J. Agric. Sci., 6(1), 178-181.
Ramli, N. A., & Munisamy, S. (2015). Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure. Econ. Model., 47, 219-227. https://doi.org/https://doi.org/10.1016/j. econmod. 2015.02.034
Robaina-Alves, M., Moutinho, V., & Macedo, P. (2015). A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod., 103, 562-573.
Robertson, G. P. (2015). A Sustainable Agriculture? Daedalus, 144(4), 76-89. https://doi.org/10.1162/DAE D_a_00355
Rodríguez-Fernández, M. P., Hidalgo-González, C., & Pérez-Neira, D. (2025). A Comprehensive Regional Approach to Eco-Efficiency in Spanish Agriculture over Time. Agronomy, 15(3), 621.
Soni, P., Taewichit, C., & Salokhe, V. M. (2013). Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agric. Syst., 116, 25-36. https://doi.org/https://doi.org/ 10.1016/j.agsy.2012.12.006
Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135, 405-412.
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. PNAS, 108(50), 20260-20264.
Tyteca, D. (1997). Linear programming models for the measurement of environmental performance of firms—concepts and empirical results. J. Prod. Anal., 8, 183-197.
Wang, J., Zhou, F., Xie, A., & Shi, J. (2024). Impacts of the integral development of agriculture and tourism on agricultural eco-efficiency: A case study of two river basins in China. Environ. Dev. Sustain., 26(1), 1701-1730.
Wang, Y., Yang, S., Ahmad, F., & Chandio, A. A. (2024). Agricultural eco-efficiency and sustainable agricultural development influential factors and heterogeneities: Exclusive evidence from Chinese cities. Environ. Dev. Sustain., 1-25. https://doi.org/10.1007/s10668-024-04905-x

Articles in Press, Accepted Manuscript
Available Online from 16 September 2025