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Abstract 6 

While agriculture relies on inputs to produce desired outputs; however, it also generates 7 

unintended environmental impacts. Given rising global food demand, reducing environmental 8 

impacts through production cuts, is often impractical. Thus, this study employs Data 9 

Envelopment Analysis with Material Balance Principle model to evaluate rice farmers' eco-10 

efficiency. Additionally, it examines optimal input allocation with and without environmental 11 

consideration. The study focuses on rice farmers in the Gotvand region of Khuzestan Province, 12 

Iran. The primary data were collected through 153 questionnaires administered to local rice 13 

farmers in 2022. The findings revealed that the average technical efficiency of rice farmers in 14 

Gotvand region is 87% under conventional efficiency measures, but this drops to 73% when 15 

environmental pollution is factored in. To achieve optimal efficiency, inefficient Decision-16 

Making Units must reduce their carbon dioxide emissions by an average of 8%. To improve 17 

eco-efficiency, the study identifies different optimization patterns: substantial reductions are 18 

needed for nitrogen fertilizer (-41.1%), fuel (-38.5%), and machinery operation hours (-33.6%), 19 

while increases are recommended for animal manure (612%), potassium fertilizer (6.25%), and 20 

phosphate fertilizer (2.7%). Therefore, key contributors to the inefficiency among the studied 21 

producers include inadequate animal manure application, excessive nitrogen fertilizer use, 22 

diesel fuel consumption, and machine operation hours. Notably, electricity usage has a minimal 23 

impact on inefficiency, with no significant changes detected. These findings underscore the 24 

necessity of optimized input management, especially chemical fertilizer reduction , to enhance 25 

both economic and environmental sustainability in rice farming.  26 

Keywords: Ecoefficiency, Material Balance Principle, Environmental Impacts, Carbon 27 

Dioxide, Rice production. 28 

 29 

Introduction 30 

Agriculture is an essential economic sector that transforms inputs into valuable outputs, yet it 31 

inevitably generates undesirable byproducts ((Ramli & Munisamy, 2015). In light of growing 32 
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environmental degradation and the global emphasis on sustainability, protecting agricultural 33 

ecosystems and ensuring sustainable farming practices have become key priorities for 34 

policymakers and researchers (Wang et al., 2024). Recognizing the long-term costs of 35 

environmental damage, governments worldwide have established dedicated environmental 36 

agencies and implemented policies to encourage responsible natural resources management 37 

(Abdollahi & Faryadi, 2010).  38 

Among economic sectors, agriculture has the strongest connection with the environment. On 39 

one hand, environmentally conscious agriculture seeks to achieve sustainable development by 40 

striking a delicate balance between the economic benefits of agricultural production and 41 

environmental conservation (Li et al., 2012). On the other hand, sustainable agriculture not 42 

only shouls addresses current food demands but also ensures resource availability for future 43 

generations (Robertson, 2015). This approach balances environmental improvements, efficient 44 

input use, food security, and societal well-being. A fundamental aspect of sustainable farming 45 

is replacing chemical inputs with organic alternatives, to minimize reliance on harmful inputs 46 

(Patel et al., 2010). 47 

However, given the limited water and soil resources in agriculture, chemical fertilizers and 48 

pesticides remain essential for increasing productivity. Nevertheless, their overapplication fails 49 

to proportionally boost yields while creating severe ecological consequences including 50 

environmental pollution, biodiversity reduction, ecosystem disruption, and increased  51 

production costs (Lin et al., 2013).  Thus, researchers face the dual challenge of ensuring food 52 

security while minimizing environmental harm. This necessitates developing innovative 53 

methods for eco friendly agricultural practices with reduced environmental footprints (Tilman 54 

et al., 2011). 55 

In Iran, fertilizer consumption has risen substantially due to national self-sufficiency policies 56 

and progressive land degradation (Maghrebi et al., 2020; Naghavi et al., 2022). Official 57 

statistics from 2019 indicate usage of 2.15 million metric tons of fertilizers and 270,000 tons 58 

of pesticides nationwide. Climate change impacts, particularly temperature increases and 59 

altered rainfall patterns, have further exacerbated pesticide demands (Naghavi et al., 2022). 60 

These trends have prompted critical reassessment of conventional farming's heavy reliance on 61 

chemical inputs (Taheri-Rad et al., 2017).  62 

Developing indicators to measure the impact of agricultural activities on natural resources and 63 

environment is crucial for policymakers (Robaina-Alves et al., 2015). Production eco-64 

efficiency refers to the capacity of economic systems to manufacture products and deliver 65 
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services while minimizing negative consequences for ecosystems. In recent years, this metric 66 

has evolved into a key concern for policymakers and economic stakeholders, with both private 67 

enterprises and governmental institutions now systematically incorporating it into their project 68 

planning and implementation processes (Emrouznejad et al., 2023). Eco-efficiency studies 69 

provide a systematic approach to detect key variables affecting production efficiency and 70 

sustainability outcomes, facilitating integrated decision-making across policy and operational 71 

levels (Angulo-Meza et al., 2019). This concept is particularly important in farming, where the 72 

complex interactions among various production factors makes decisions much more 73 

complicated than in other industries (Rodríguez-Fernández et al., 2025). 74 

 Eco-efficiency -a key metric- measures the ratio of economic output to environmental input. 75 

In agriculture, it estimates the maximum possible output with minimal resources use and 76 

pollution (Deng & Gibson, 2019). Despite limitations, this approach is favored for its cost-77 

effectiveness in reducing environmental pressure and simpler policy implementation compared 78 

to restrictive measures (Ekins, 2005). However, traditional theory suggests that improving eco-79 

efficiency may raise cost and reduce profit for businesses. 80 

The Material Balance Principle (MBP), rooted in thermodynamics' first law, asserts that matter 81 

cannot be created or destroyed. This conservation law maintains the environmental inputs and 82 

outputs must balance (Field & Field, 2017; Field & Olewiler, 2005). The core principle of the 83 

material balance condition states that "what goes in must come out" (Arabi et al., 2017). 84 

Emrouznejad et al., (2023) pioneered its application in economics. Essentially, all mater 85 

entering an ecosystem must eventually leave it. When applied to biophysical-economic 86 

efficiency analysis, the MBP allows for examination of both desirable and undesirable inputs 87 

and outputs. A key methodology for evaluating environmental efficiency is the combined 88 

application of Data Envelopment Analysis (DEA) and MBP (DEA-MBP). 89 

  Numerous studies have conducted to evaluate the eco-efficiency in various sectors, 90 

particularly in agriculture. Coelli et al. (2007) measured pig farms' eco-efficiency using an 91 

input-oriented meta frontier approach and found that improved efficiency leads to notable 92 

reductions in nutrient pollution. Carberry et al. (2013) demonstrated how eco-efficient 93 

agriculture is crucial for global food security while optimizing resource use. Comparing over 94 

3,000 farm surveys across China, Zimbabwe, and Australia revealed that Australian operated 95 

near eco-efficiency frontiers with minimal nitrogen losses, Chinese farmers can reduce inputs 96 

without yield penalties, while Zimbabwean systems require both improved efficiency and 97 

increased inputs with institutional support. In China, Pang et al. (2016) combined DEA with 98 
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Total Factor Productivity analysis to demonstrate that only four provinces achieved optimal 99 

agricultural efficiency, while Molaei et al. (2017) estimated the eco-efficiency of rice farmers 100 

in Babolsar County at 77%, revealing a 23% gap compared to their technical efficiency. Dashti 101 

et al. (2020) assessed economic and eco-efficiency using DEA and the Toda-Yamamoto test. 102 

Results showed 71% Constant Return to Scale (CRS) and 92% Variable Return to Scale (VRS) 103 

economic efficiency, alongside 88% eco-efficiency. Mohammadi et al. (2022)  by integrating 104 

environmental Life Cycle Assessment (LCA) and DEA reveals significant eco-efficiency 105 

improvement opportunities (10-16% across multiple impact categories) in Northern Iran's 106 

wheat sector when modeling optimal resource allocation. This dual-method approach offers a 107 

replicable model for agricultural sustainability assessments globally. Cecchini et al. (2023) 108 

evaluated the eco-efficiency of 148 extensive beef cattle farms in Central Italy using a two-109 

stage approach include input-oriented DEA with slack variables to measure eco-inefficiency 110 

and input reduction potential, and truncated regression to identify influencing factors.  Wang 111 

et al. (2024) estimated agricultural eco-efficiency in China's Yangtze River Economic Belt 112 

(2007–2021), revealing regional disparities and key drivers (planting structure, mechanization, 113 

urbanization) for sustainable development. Rodríguez-Fernández et al. (2025) evaluated the 114 

eco-efficiency of Spain's regional agricultural systems (2004-2022) using Slack-Based Models 115 

and DEA (SBM-DEA) methodology. Results reveal national eco-efficiency scores ranging 116 

0.644-0.837 (mean=0.772), with 47% of regions exceeding average performance.  117 

Rice (Oryza sativa L.) ranks as the world's second most important cereal crop after wheat 118 

(Triticum aestivum L.), serving as a staple food for more than half of the global population. 119 

Asia dominates both production and consumption of this vital grain (Mohidem et al., 2022). In 120 

Iran, cereal crops constitute the most extensively cultivated agricultural products, representing 121 

71.2% of the country's total cultivated area according to 2020 data from the Ministry of 122 

Agriculture-Jahad. Wheat occupies the largest share at approximately 69% of this cultivated 123 

area, while rice accounts for about 14% of grain consumption nationwide (Javadi et al., 2023). 124 

Iran's rice cultivation covers an estimated 529,000 hectares, yielding around 2.3 million metric 125 

tons annually. However, to satisfy domestic demand, the country must supplement this with 126 

imports of 1.7 million metric tons each year (Kouchaki-Penchah et al., 2023).  127 

The Gotvand irrigation and drainage network is located in southwestern Iran, within Khuzestan 128 

province. Agriculture is vital to the local economy, supporting around 70% of the population, 129 

with rice being a key crop. However, the area has struggled with droughts and water shortages, 130 

highlighting the need for better land assessment and efficient farming methods. Enhancing rice 131 
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production is essential to boost food security, create rural jobs, raise incomes, and ensure long-132 

term economic viability for farmers. Achieving these objectives would align with broader 133 

sustainable development goals for the region. 134 

So far, no study in Iran has assessed eco-efficiency using the MBP. This study aims to address 135 

this gap by evaluating the eco-efficiency of rice farmers through the DEA-MBP model. 136 

Furthermore, it examines variations in optimal input usage when accounting for environmental 137 

pressures compared to scenarios that disregard them. 138 

The primary objective of this study is to estimate the technical and eco-efficiency of rice 139 

farmers in the Gotvand Irrigation and Drainage Network. In addition, the study will calculate 140 

the percentage changes in farmers' input usage required to achieve the computed efficiency 141 

levels. Accordingly, the present study makes two significant contributions to the extant 142 

literature. Firstly, it is a pioneering application of the DEA-MBP framework in the domain of 143 

agricultural research, with a particular focus on rice farming. Secondly, it proposes an 144 

innovative method for quantifying environmental pollution, thereby enhancing the analysis of 145 

trade-offs between ecological and economic performance. Contrary to the approach of previous 146 

studies, which predominantly measured undesirable outputs in conjunction with desirable ones, 147 

this research employs an alternative methodology. It incorporates undesirable inputs, such as 148 

fertilizers and pesticides, along with desirable inputs, including water and labor, in eco-149 

efficiency assessments. 150 

 151 

Materials and Methods 152 

This study employs the DEA-MBP framework (Arabi et al., 2017) to evaluate farm-level eco-153 

efficiency in rice production, integrating MBP with environmental pressure metrics. Figure 1 154 

visualizes the rice eco-efficiency assessment framework, with further methodological details 155 

elaborated in later sections. 156 
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 157 

Figure 1. Conceptual framework for determining technical and co-efficiency of rice producers. 158 

 159 

Originally, Farrel (1959) introduced the theoretical framework for measuring efficiency. Later, 160 

DEA—a linear programming technique for assessing the efficiency of Decision-Making Units 161 

(DMUs) —was developed by Charnes, Cooper, and Rhodes (CCR, 1978), who derived 162 

generalized mathematical equations under CRS assumptions. This approach uses the 163 

production frontier of DMUs as a reference point for efficiency measurement, calculating 164 

efficiency scores through input-to-output ratios. Efficiency analysis can be divided into input-165 

oriented approaches (minimizing inputs while holding outputs constant) and output-oriented 166 

approaches (maximizing outputs given fixed inputs). Banker, Charnes, and Cooper (1984) 167 

subsequently extended the CCR model by introducing a convexity constraint on linear 168 

combinations, replacing the CRS assumption with VRS, and decomposing technical efficiency 169 

into pure technical efficiency and scale efficiency components.  170 

DEA has emerged as a principal tool for eco-efficiency assessment over the past three decades, 171 

with ongoing model refinements being crucial for achieving net-zero emissions targets 172 

(Emrouznejad, 2023). Pioneering work by Schaltegger and Sturm first conceptualized 173 

environmental efficiency as the ratio of economic growth to environmental impacts during a 174 

specified timeframe (Cui & Wang, 2023). Subsequent research has classified environmental 175 
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efficiency evaluations into two paradigms: those treating environmental pressures (e.g., 176 

pollution emissions, waste generation) as undesirable outputs and those modeling them as 177 

inputs in efficiency frameworks (Tyteca, 1997). 178 

Among other approaches developed for measuring eco-efficiency that have attracted 179 

researchers' attention is the MBP. It relates to the interplay between ecological systems, 180 

encompassing economic and social aspects, and involving production and consumption. These 181 

systems are influenced by the flow of materials and energy, such as extraction, utilization, 182 

recycling, and waste disposal, in the natural environment. The Law of Conservation of 183 

Matter/Energy asserts that the inflow and outflow in the environment should be balanced. 184 

Nevertheless, Lauwers (2009) argues that MBP has been largely overlooked in most studies in 185 

this field. The Directional Distance Function (DDF) model, introduced by Charnes et al., 186 

(1997), is a commonly used model that incorporates undesirable outputs into efficiency 187 

measurement models. Despite the popularity of this and other models used to estimate eco-188 

efficiency, Lauwers (2009) have raised significant criticisms regarding the compatibility of 189 

these models with MBP. The DEA-MBP model, introduced by Coelli et al., (2007), has both 190 

advantages and limitations when implemented in various industries. By considering N DMUs, 191 

this model can be expressed through equations (9) to (11). 192 

Min λXo
eao

e   (1) 

s. t. : ∑ Xni ≤ Xoi
e

N

n=1

   i = 1, 2, … , I                                                 (2) 

∑ λnynj ≤ yoj

N

n=1

     j = 1,2, … , J                                                      

λn ≥ 0     n = 1, 2, … , N 

(3) 

 193 

Where o denotes the DMU being analyzed, Xₑₒᵢ represents input variables for optimizing 194 

pollution reduction, and aₒᵉ reflects nutrient content. Inputs (Xₙᵢ) and outputs (yₙⱼ) of  nth unit are 195 

weighted by constants λₙ. However, the model has limitations: it ignores actual pollution levels 196 

(often hard to quantify in agriculture) and oversimplifies pollution production/disposal 197 

processes. While it identifies input-efficient pollution-minimizing combinations, its accuracy 198 

declines with numerous inputs, reducing result reliability. 199 

To accurately assess eco-efficiency, a robust model compatible with MBP requirements is 200 

essential – one that maintains its validity even when MBP constraints are applied. While 201 

multiple MBP-compliant models exist, selection should be context-dependent. The Färe and 202 

Grosskopf (2010) framework is particularly recommended for eco-efficiency calculations. 203 
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D0(x, y) = Maxf(z) = ∑ ai

I

i=1

+ ∑ bj

J

j=1

 (4) 

S. t. : ∑ λnXni = Xi0 − ai. 1

N

n=1

          i = 1, 2, … , I                         (5) 

∑ λnyjn = yj0 + bj. 1

N

n=1

      j = 1, 2 , … , J                                      (6) 

λn ≥ 0,       bj ≥ 0,   aj ≥ 0         n = 1, 2, … , N 

 204 

The model under consideration employs non-radial slack-based models (SBM) that evaluate 205 

efficiency through simultaneous output maximization and input minimization approaches. The 206 

selection of this model is predicated on its distinguishing characteristic from traditional radial 207 

DEA models in that it separately measures inefficiency slacks in inputs and outputs without 208 

requiring proportional adjustments. This methodological approach offers enhanced flexibility 209 

by permitting differential improvement rates for each variable. Additionally, SBM possesses 210 

the capacity to incorporate undesirable outputs, such as pollution, which are frequently ignored 211 

by conventional models. A comparison of SBM with radial methods reveals that the former 212 

provides more precise and practical results in real-world, complex efficiency analyses. 213 

Based on the aforementioned model, Arabi et al. (2017) proposed their DEA-MBP alternative 214 

model to calculate the eco-efficiency under the CRS technology. CRS are frequently employed 215 

in the DEA model as opposed to VRS for a number of salient reasons. Firstly, CRS operates 216 

under the assumption of perfect scalability, rendering it more appropriate for theoretical 217 

benchmarks or long-term analyses, where scale effects are deemed irrelevant. Secondly, it 218 

quantifies technical efficiency without the necessity of isolating scale inefficiencies, a process 219 

which is beneficial when evaluating overall productivity as opposed to operational scale 220 

impacts. Thirdly, CRS is consistent with classical economic models that assume optimal long-221 

term production scales. Fourthly, in instances where firms operate within similar sizes or where 222 

data is limited, CRS is able to circumvent unnecessary complexity. Finally, in instances where 223 

the study focuses on ranking units rather than scale effects, CRS provides a more 224 

straightforward comparison.The model incorporates equations (7) to (14) in which inputs are 225 

classified into two categories: high-pollutant inputs and low pollutant inputs.  226 

𝐷0(𝑥, 𝑦) = 𝑀𝑎𝑥 ∑ 𝑎𝑙

𝐿

𝑙=1

+ ∑ 𝑎ℎ

𝐻

ℎ=1

+ ∑ 𝑎𝑚

𝑀

𝑚=1

+ ∑ 𝑏𝑗

𝐽

𝑗=1

+ ∑ 𝛾𝑘

𝐾

𝑘=1

 (7) 
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s. t. : ∑ 𝜆𝑛𝑋𝑙𝑛

𝑁

𝑛=1

≤ 𝑋𝑙𝑜 + 𝑎𝑙 . 01                       𝑙 = 1, 2, … , 𝐿 (8) 

∑ 𝜆𝑛𝑋ℎ𝑛

𝑁

𝑛=1

≤ 𝑋ℎ𝑜 + 𝑎ℎ. 01                    ℎ = 1, 2, … , 𝐻   (9) 

∑ λnmXnm

N

n=1

≤ Xmo + am. 01                    m = 1, 2, … , M (10) 

∑ 𝜆𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗𝑜 + 𝑏𝑗 . 01                     𝑗 = 1, 2, … , 𝐽 (11) 

∑ 𝜆𝑛𝑧𝑘𝑛

𝑁

𝑛=1

≤ 𝑧𝑘𝑜 − 𝛾𝑘. 01                    𝑘 = 1, 2, … , 𝐾 (12) 

∑ 𝑎𝑙

𝐿

𝑙=1

− ∑ 𝑎ℎ

𝐻

ℎ=1

= 0                                                                        (13) 

𝛾𝑘 − ∑ 𝑏𝑗𝑘

𝐽

𝑗=1

𝐵𝑗 = ∑ 𝑎ℎ𝑘

𝐻

ℎ=1

𝑎ℎ − ∑ 𝑎𝑙𝑘

𝑁

𝑙=1

𝑎𝑙 (14) 

 𝜆𝑛 ≥ 0, 𝑎𝑙 ≥ 0, 𝑎ℎ ≥ 0, 𝛾𝑘 ≥ 0,   𝑎𝑚  ≥ 0     𝐵𝑗 ≥ 0,   𝑛 = 1, 2, … , 𝑁 

 227 

This model classifies inputs as: Xₗ (low-pollution), Xₕ (high-pollution), and Xm (non-polluting, 228 

e.g., capital). Outputs are categorized as desirable (y) and undesirable (z). Key parameters 229 

include: αₗ and αₕ (reduction/expansion rates for low/high-pollution inputs), αₘ (non-polluting 230 

input reduction rate), and γ/β (undesirable/desirable output reduction rates). Notably, αₕ > αₗ 231 

ensures proper pollution-level differentiation. 232 

The model incorporates the constraint H + L + M = I (total inputs) for mathematical 233 

consistency. Constraints 1 & 5 originate from conventional SBM models Färe and Grosskopf 234 

(2010), with constraints 1-2 reflecting preferences for low-pollution inputs. Constraints 3-5 235 

mirror standard SBM applications for non-polluting inputs and outputs. The sixth constraint 236 

(αₕ = αₗ = 0 for efficient DMUs) and seventh constraint maintain thermodynamic consistency 237 

in the Production Possibility Set (PPS) - without which no DMU would satisfy the first law of 238 

thermodynamics. 239 

This study presents an analytical framework assessing agricultural systems using dual outputs: 240 

crop yield and CO₂eq emissions. The model integrates various inputs - land, labor, fertilizers 241 

(N, P, K), pesticides, manure, seeds, machinery, fuel, and water. Building on (Khan et al., 242 
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2018), it highlights environmental consequences: nitrogen degrades soil quality while 243 

phosphate pollutes water systems, with GHG emissions converted to CO₂eq following Soni et 244 

al. (2013). Inputs are classified by emission intensity: high-polluting (>1 kg CO₂eq/unit: 245 

nitrogen, fungicides, machinery, diesel), low-polluting (<1 kg CO₂eq/unit: potassium, 246 

phosphate, manure, labor, electricity), and neutral (seeds, water). By simultaneously evaluating 247 

crop production and emissions, the model enables holistic sustainability analysis of farming 248 

practices. 249 

Primary data were collected through farmer questionnaires during 2022. The questionnaire 250 

included questions covering various input quantities used by rice farmers as well as their 251 

production output quantities. Using Kotrlik and Higgins (2001) adjusted Cochran formula with 252 

a total population of approximately 420 rice farmers, we determined a representative sample 253 

size of 153 participants. The sampling procedure employed simple random selection to ensure 254 

unbiased representation for subsequent analysis.2 255 

 256 

 Results and Discussion 257 

Table 1 presents descriptive statistics of input and output variables, revealing significant 258 

heterogeneity in application pattern. potassium fertilizers demonstrate the greatest variability 259 

(CV=4.94), followed by phosphate (CV=2.44), nitrogen (CV=0.92) and animal manure 260 

(CV=0.56). This dispersion likely reflects differential substitution patterns between chemical 261 

and organic inputs across farmers. Notably, the carbon dioxide equivalent, as an indicator of 262 

environmental pollution potential, indicating the substantial variations in the use of inputs 263 

among DMUs. Hence, strategic input optimization reduces both environmental impact and 264 

agricultural costs. 265 

The eco-efficiency analysis presented in Table 2 reveals critical insights into rice production 266 

systems. The results demonstrate a mean technical efficiency of 87% among producers, which 267 

decreases to 73% when considering environmental pollution, indicating a 14% overestimation 268 

of efficiency in conventional assessments. This discrepancy highlights the significant impact 269 

of environmental factors on production efficiency. The distribution of efficiency scores shows 270 

notable variation across farmers. While 40.5% (62 DMUs) achieved full technical efficiency, 271 

only 33.3% (51 DMUs) attained complete eco-efficiency. The range of efficiency scores was 272 

substantially wider for eco-efficiency (2-100%) compared to technical efficiency (40-100%), 273 

with corresponding coefficients of variation of 0.38 and 0.08, respectively. The analysis further 274 

 

2- The data file and GAMS code are available 
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indicates that 54% of units exceeded 90% technical efficiency, compared to just 42% achieving 275 

similar levels of eco-efficiency. These findings consistent with Ramli and Munisamy (2015) 276 

that emphasize two key implications for agricultural policy: conventional efficiency assesment 277 

systematically overestimate true performance by neglecting environmental costs, and 278 

significant potential exists for improving both economic and environmental outcomes through 279 

targeted interventions.  280 

 281 

Table 1. Statistical description of inputs and outputs used in rice cultivation (hectares). 282 

283 

 284 

Table 2. Calculated technical and eco-efficiency of rice farmers. 285 

Efficiency Mean Min Max C.V. 
Number (percentage) of DMUs in efficiency categories 

<0.6 0.6-0.8 0.8-0.9 0.9-1 1 

Technical 0.87 0.4 1 0.08 4 

(2.6%) 

48 

(31.4%) 

18 

(11.8%) 

21 

(13.7%) 

62 

(40.5%) 

Eco- 0.73 0.02 1 0.384 53 

(36%) 

18 

(11.8%) 

15 

(9.8%) 

14 

(9.2%) 

51 

(33.3%) 

 286 

Table (3) presents a comparative analysis of actual versus optimal input and output values 287 

based on slack/surplus measures derived from the models. The findings reveal that in the eco-288 

efficiency model, inefficient DMUs exhibit a positive percentage change in the optimal use of 289 

low-pollution inputs compared to actual usage, suggesting that these inputs should 290 

be increased. Conversely, High-pollution inputs show a negative percentage change, 291 

indicating a need for reduction in inefficient DMUs. The analysis highlights significant 292 

adjustments needed to enhance eco-efficiency in agricultural practices. The most notable 293 

change concerns nitrogen fertilizer, where DMUs should reduce application rates by 294 

 

3- Standared Deviation 

4- Coefficient of Variation 

Input/outp

ut  

Variable 

type 

Variable  Mean SD3 Min. Max. CV4 

 

 

Inputs 

Low 

Pollution 

Input 

Potassium Kg 1.6 7.9 0.00 65 4.94 

Phosphate Kg 11.1 27.1 0.00 100 2.44 

Animal Manure Tone 31.7 17.8 10 90 0.56 

Labor Force Hour 981.6 421 227 2000 0.43 

Electricity Kwh 21735 4771 8384 39300 0.22 

High 

Pollution 

Input 

Nitrogen kg 51.3 47 0.00 350 0.92 

Fungicide Kg 1.6 0.9 0.00 3 0.56 

Machinery Hour 41.7 16.1 8.66 89.06 0.39 

Fuel (Diesel) Liter 473.5 227 94 1535 0.48 

Independent 

Input 

Seeds Kg 281.5 51.1 185 397 0.18 

Water Cubic meter 4898 1118 3000 6500 0.23 

Outputs 

Desirable 

Output 

Crop kg 6006 1489 4000 9000 0.25 

Undesirabe 

Output 

Carbon Dioxide 

Equivalents 

Kg 7289 4455.5 0 15379 0.61 
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approximately 41% to achieve optimal eco-efficiency. This substantial reduction reflects 295 

nitrogen's significant environmental impact. Conversely, among Low-pollution inputs, animal 296 

manure demonstrates the greatest potential for increased utilization (612%). This results 297 

indicate that substituting nitrogen fertilizer with animal manure could significantly reduce 298 

environmental pollution. The model also indicates that current phosphate and potassium 299 

application rates are below optimal levels, requiring increased usage by 2.7% and 6.25% 300 

respectivelly. While eco-efficiency demands a 26.3% reduction in water use, tecnichal 301 

efficiency achieves comparable gains with just a 6.8% decrease.   302 

 303 

Table 3. The average optimal use of inputs and the percentage changes in their use relative to 304 

the actual use. 305 

Input/ 

output 
Variable type Variable 

Mean 

Technical 

Efficiency 
Eco-efficiency 

Mean Change% Mean Change% 

 

 

Inputs 

Low Pollution Input 

Potassium 1.6 1.4 -12.5 1.7 6.25 

Phosphate 11.1 6.5 -41.4 11.4 2.7 

Animal Manure 31.7 27.5 -13.2 225.7 612 

Labor Force 981.6 881.1 -10.2 1005 2.4 

Electricity 21735 20156 -7.3 21735 0.00 

High Pollution Input 

Nitrogen 51.3 41.8 -18.5 30.2 -41.1 

Fungicide 1.6 1.4 -12.5 1.2 -25 

Machinery 41.7 37.2 -10.8 27.7 -33.6 

Fuel (Diesel) 473.5 420.1 -11.3 291 -38.5 

Independent Input 
Seeds 281.5 260.3 -7.5 230 -18.3 

Water 4898 4565 -6.8 3611 -26.3 

Outputs 

Desirable Output Crop 6006 6006 0.00 6027 0.35 

Undesirable Output Carbon Dioxide 

Equivalents 

7289 - - 6722 -7.8 

 306 

Results indicate that current rice production levels are already optimal, as both technical and 307 

eco-efficiency models show minimal required changes in output (0.00% and 0.35%). However, 308 

achieving eco-efficiency requires an average of 8% reduction in carbon dioxide emissions 309 

along with significant input adjustments.  310 

The analysis reveals distinct input optimization requirements for enhancing both technical and 311 

eco-efficiency in rice production. For technical efficiency gains, the study highlights three 312 

critical inputs needing significant reduction: phosphate fertilizers (-41.4%), nitrogen (-18.5%), 313 

and animal manure (-13.2%). More modest reductions are suggested for water (-6.8%), seeds 314 

(-7.3%), and electricity (-7.5%). Regarding eco-efficiency improvements, the study identifies 315 

different optimization patterns: substantial reduction are needed for nitrogen fertilizer (-316 

41.1%), fuel (-38.5%), and machinery operation hours (-33.6%), while increases are 317 

recommended for animal manure (612%), potassium fertilizer (6.25%), and phosphate 318 

fertilizer (2.7%). These findings collectively identify the root causes of eco-inefficiency in the 319 
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production system: inadequate application of organic manure combined with excessive use of 320 

nitrogen-based fertilizers, diesel fuel consumption, and machinery utilization. Notably, the 321 

research found electricity consumption has minimal influence on overall system efficiency. 322 

These findings demonstrate that while output levels are optimized, substantial efficiency gains 323 

can be achieved through strategic input reallocation- particularly by reducing chemical 324 

fertilizer use and increasing organic alternatives- without compromising productivity. The 325 

results emphasize the importance of input restructuring for achieving both technical and 326 

environmental efficiency in rice production systems. The results also revealed a 14% gap 327 

between eco-efficiency (87%) and technical efficiency (73%), indicating that conventional 328 

efficiency measurements overestimate actual performance by 14% when environmental factors 329 

are excluded. 330 

eco-efficiency assessment requires a dual focus: optimizing input-output ratios while 331 

strategically managing pollution levels through input substitution. True efficiency isn't 332 

achieved merely by maximizing output with minimal inputs, as this approach overlooks the 333 

environmental degradation that ultimately reduces overall efficiency. Environmentally 334 

efficient DMUs distinguish themselves by both optimizing production inputs and 335 

systematically replacing high-pollution inputs with cleaner alternatives. 336 

Supporting evidence comes from Huang et al. (2022), whose research on Chinese rice 337 

cultivation demonstrated that cutting fertilizer and pesticide use by half - while switching to 338 

eco-friendly alternatives - boosted bio-economic efficiency by 6%. This finding underscores 339 

the tangible benefits of pollution-conscious input management. 340 

This study shows that despite adopting optimal technical practices, rice farmers fail to achieve 341 

satisfactory environmental sustainability. This issue not only raises production costs due to 342 

chemical fertilizer use but also degrades soil and water resources. To address these challenges, 343 

reducing chemical fertilizer use and optimizing their application is essential for improving eco-344 

efficiency in the region. This measure is critical for public health and preventing excessive 345 

chemical buildup in soil. Additionally, farmers should decrease reliance on phosphorus, 346 

potassium, and nitrogen inputs while increasing organic manure usage to enhance both 347 

environmental and economic efficiency. These findings align with Biswas et al. (2021), who 348 

demonstrated the benefits of balanced chemical and organic fertilizer use on production, as 349 

well as the negative effects of excessive pesticide application. 350 

The optimal production level, when considering environmental impacts, closely aligns with 351 

traditional technical efficiency values. However, inefficient units must reduce CO₂ emissions 352 
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by approximately 8% to reach optimal efficiency. Gancone et al. (2017) assessed eco-353 

efficiency in Latvia’s agriculture, showing that production can stabilize at a certain level while 354 

enhancing both technical and environmental efficiency. Their findings also indicate that 355 

greenhouse gas emissions can grow at a slower rate than under current conditions. Given the 356 

similarities in economic and eco-efficiency objectives between these studies, such results are 357 

consistent with the present research. 358 

The results reveal that optimal input usage in rice production is lower than actual consumption, 359 

indicating inefficiency due to overuse. Efficient farms already match optimal input levels, 360 

requiring no adjustments. However, inefficient farms should shift from labor, manure, 361 

phosphates, and potassium to more polluting inputs like nitrogen, machinery, diesel, and 362 

fungicides to maximize efficiency. Given the region's high unemployment (Ghojagh et al., 363 

2023), replacing labor with machinery is a viable option. Additionally, Mardani Najafabadi 364 

and Ashktorab (2023) suggest that modifying cropping patterns can reduce fertilizer and 365 

pesticide use by 6–8% without cutting profits. 366 

The results also indicate that the Spearman rank correlation between the two efficiency 367 

rankings was 0.697, statistically significant at the 5% level. Since eco-efficiency accounts for 368 

environmental pressures, it leads to a greater reduction in polluting inputs than expected. By 369 

integrating both economic and environmental factors, this approach provides a more suitable 370 

framework for policymakers, especially in developing economies with limited resources. 371 

Simultaneously considering these aspects significantly influences rice producers' efficiency 372 

measurements. Similarly, Mardani Najafabadi et al. (2023) observed that saffron growers had 373 

higher technical efficiency than eco-efficiency, with the difference being statistically 374 

significant at the 1% level. 375 

 376 

Conclusions 377 

This study evaluated eco-efficiency through analysis of three input categories - high-pollution, 378 

low-pollution, and pollution-neutral inputs - while maintaining MBP. The study demonstrates 379 

that conventional efficiency measurements overestimate producer performance by about 14% 380 

when they fail to account for environmental pollution and material balance. This discrepancy 381 

highlights the necessity of incorporating negative environmental outputs in agricultural 382 

efficiency assessments. 383 

Eco-efficient DMUs optimize production not only by minimizing inputs but also by 384 

substituting high-pollution inputs with cleaner alternatives. Chemical fertilizers emerge as 385 

particularly problematic, showing the widest gap from optimal usage levels among all 386 
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environmentally damaging inputs. To address these challenges, government intervention 387 

should focus on two key areas: comprehensive farmer education programs for optimal input 388 

utilization and development of supportive policy frameworks to encourage organic production 389 

methods. Additionally, upgrading obsolete farming equipment in rice cultivation and 390 

implementing long-term machinery modernization programs would significantly improve 391 

operational efficiency. A key limitation of the DEA-MBP model is - it doesn't incorporate 392 

uncertainty factors. Future studies could substantially enhance the model's reliability and 393 

practical application by integrating uncertainty analysis methods such as fuzzy set theory, 394 

stochastic programming, or robust optimization techniques. 395 
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