1. Adhikari, R., Li, C., Kalbaugh, K. and Nemali, K. 2020. A Low-Cost Smartphone Controlled Sensor Based on Image Analysis for Estimating Whole-Plant Tissue Nitrogen (N) Content in Floriculture Crops. Comput. Electron. Agric., 169: 105173.
2. An, N., Palmer, C. M., Baker, R. L., Markelz, R. J. C., Ta, J., Covington, M. F., Maloof, J. N., Welch, S. M. and Weinig, C. 2016. Plant High-throughput Phenotyping Using Photogrammetry and Imaging Techniques to Measure Leaf Length and Rosette Area. Comput. Electron. Agric.,127: 376-394.
3. Barman,U., Choudhury, R. D., Sahu, D. and Barman, G. G. 2020. Comparison of Convolution Neural Networks for Smartphone Image Based on Real Time Classification of Citrus Leaf Disease.Comput. Electron. Agric., 177: 105661.
4. Chen, Y. M., Zhang, W. M., Hu, R. H., Qi, J. B., Shao, J., Li, D., Wan, P., Qiao, C., Shen, A. J. and Yan, G. J. 2018. Estimation of Forest Leaf Area Index Using Terrestrial Laser Scanning Data and Path Length Distribution Model in Open-Canopy Forests. Agric. For. Meteorol., 263: 323-333.
5. Gadissa, F., Tesfaye, K., Dagne, K. and Geleta, M. 2020. Morphological Traits Based on Genetic Diversity Assessment of Ethiopian Potato [Plectranthus edulis (Vatke) Agnew] Populations from Ethiopia. Genet. Resour. Crop Evol., 67: 809-829.
6. Jiang, Y., Li, C. Y. and Paterson, A. H. 2016. High throughput Phenotyping of Cotton Plant Height Using Depth Images under Field Conditions. Comput. Electron. Agric., 130: 57-68.
7. Jong, K. O., Han, K. M., Kawk, S. L., Jang, Y. J., Kim, K. P. and Ho, C. 2021. Simple Estimation of Green Area Rate Using Image Analysis and Quantitative Traits Related to Plant Architecture and Biomass in Rice Seedling. Theor. Exp. Plant Physiol., 33: 225-234.
8. Khadivi, A. 2018. Phenotypic Characterization of Elaeagnus angustifolia Using Multivariate Analysis. Ind. Crops Prod., 120: 155-161.
9. Liang, W. Z., Kirk, K. R. and Greene, J. K. 2018. Estimation of Soybean Leaf Area, Edge, and Defoliation Using Color Image Analysis. Comput. Electron. Agric., 150:41-51.
10. McDonald, S. C., Bilyeu, K., Koebernick, J., Buckley, B., Fallen, B., Rouf Mian, M. A. and Li, Z. L. 2023. Selecting Recombinant to Stack High Protein with High Oleic Acid and Low Linoleic Acid in Soybean (Glycine max). Plant Breed., 142:477-488.
11. Rees, W. G., Golubeva, E. I., Tutubalina, O. V., Zimin, M. V. and Derkacheva, A. A. 2020. Relation between Leaf Srea Index and NDVI for Subarctic Deciduous Vegetation. Int. J. Remote Sens., 41: 8573-8589.
12. Shahid, A., Ayyub, C. M., Abbas, M. and Ahmad, R. 2021. Assessment of genetic Diversity in Round Gourd (Praecitrullus fistulosus) Germplasm of Pakistan Considering Morphological Characters. Genet. Resour. Crop Evol., 66: 215-224.
13. Tan, K. S. and Isa, N. A. M. 2010. Color Image Segmentation Using Histogram Thresholding– Fuzzy C-Means Hybrid Approach. Pattern Recognit., 44: 1-15.
14. Wang, B., Gao, Y. S., Yuan, X. H., Xiong, S. W. and Feng, X. Z.2020. From Species to Cultivar: Soybean Cultivar Recognition Using Joint Leaf Image Patterns by Multiscale Sliding Chord Matching. Biosyst. Eng., 194: 99-111.
15. Wen, Z. F., Ma, M. H., Zhang, C.,Yi, X. M., Chen, J. L. and Wu, S. J. 2017. Estimating Seasonal Aboveground Biomass of a Riparian Pioneer Plant Community: An Exploratory Analysis by Canopy Structural Data. Ecol. Indic., 83:441-450.
16. Zanklan, S., Becker, H. C., Sørensen, M., Pawelzik, E. and Grüneberg, W. J. 2018. Genetic Diversity in Cultivated Yam Bean (Pachyrhizus spp.) Evaluated through Multivariate Analysis of Morphological and Agronomic Traits. Genet. Resour. Crop Evol., 65:811-843.
17. Zhang, C. Y., Si, Y. S., Lamkey, J. and Boydston, R. A., Garland-Campbell, K. A. And Sankaran, S. 2018. High-Throughput Phenotyping of Seed/Seedling Evaluation Using Digital Image Analysis. Agronomy, 8: 63-77.
18. Zhao, F., Jiao, L. C. and Liu, H. Q. 2013. Kernel Generalized Fuzzy C-Means Clustering with Spatial Information for Image Segmentation. Digit. Signal Process., 23: 184-199.
19. Zhou, J. F., Chen, H. T., Zhou, J., Fu, X. Q., Ye, H. and Nguyen, H. T. 2018. Development of an Automated Phenotyping Platform for Quantifying Soybean Dynamic Responses to Salinity Stress in Greenhouse Environment. Comput. Electron. Agric., 151: 319-330.