Adhikari, R., Li, C., Kalbaugh, K. and Nemali, K. 2020. A low-cost smartphone controlled sensor based on image analysis for estimating whole-plant tissue nitrogen (N) content in floriculture crops. Comput. Electron. Agric., 169:105173. https:// doi.org/10.1016/j.compag.2019.105173
An, N., Palmer, C.M., Baker, R.L., Markelz, R.J.C., Ta, J., Covington, M.F., Maloof, J.N., Welch, S.M. and Weinig, C. 2016.Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area.Comput. Electron. Agric.,127:376-394,https://doi.org/10.1016/j.Compag. 2016.04.002
Barman,U., Choudhury, R.D., Sahu,D. and Barman, G.G. 2020. Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease.Comput. Electron. Agric., 177:105661. https://doi.org/10.1016/j.compag.2020.105661
Chen, Y.M., Zhang W.M., Hu R.H., Qi J.B., Shao J., Li D., Wan P., Qiao C., Shen A.J. and Yan, G.J. 2018. Estimation of forest leaf area index using terrestrial laser scanning data and path length distribution model in open-canopy forests. Agri.Forest Meteo.,263:323-333, https://doi.org/10.1016/j.agrformet.2018.09.006
Gadissa, Fekadu, Tesfaye, Kassahun, Dagne, Kifle, Geleta, Mulatu 2020. Morphological traits based genetic diversity assessment of Ethiopian potato [Plectranthus edulis (Vatke) Agnew] populations from Ethiopia. Genet. Resour. Crop Evol., 67:809-829. https://doi.org/10.1007/s10722-019-00794-6
Jiang, Y., Li, C.Y. and Paterson, A.H. 2016. High throughput phenotyping of cotton plant height using depth images under field conditions. Comput. Electron. Agric., 130:57-68.
Jong, K.O., Han, K.M., Kawk, S.L., Jang, Y.J., Kim, K.P. and Ho, C. 2021. Simple estimation of green area rate using image analysis and quantitative traits related to plant architecture and biomass in rice seedling. Theor. Exp. Plant. Physiol., 33: 225-234. https://doi.org/10.1007/s40 626-021-00207-z
Khadivi,A.2018.Phenotypic characterization of Elaeagnus angustifolia using multivariate analysis.Ind. Crops Prod., 120, 155-161. https://doi.org/10.1016/j.indcrop.2018.04.050
Liang, W.Z., Kirk, K.R., Greene, J.K. 2018.Estimation of soybean leaf area, edge, and defoliation using color image analysis. Comput. Electron. Agric., 150:41-51. https://doi.org/10.1016/j.compag.2018.03.021
McDonald, S. C., Bilyeu, K., Koebernick, J., Buckley,B., Fallen, B. , Rouf Mian, M. A., Li, Z.L. 2023.Selecting recombinan ts to stack high protein with high oleic acid and low linoleic acid in soybean (Glycine max). Plant Breed.,142:477-488. https://doi.org//10.1111/pbr.13102
Rees, W. G., Golubeva , E. I. , Tutubalina, O. V., Zimin, M. V. and Derkacheva, A. A. 2020.Relation between leaf area index and NDVI for subarctic deciduous vegetation.Inter. J. Remote Sensing.41:8573-8589.https://doi. org/10.1080/01431161.2020.1782505
Shahid, A., Ayyub, C.M., Abbas, M. and Ahmad, R. 2021.Assessment of genetic diversity in round gourd (Praecitrullus fistulosus) germplasm of Pakistan considering morphological characters.Genet.Resour.Crop Evol.,66:215-224.https://doi.org/10.1007/s10722-018-0707-5
Siang, Tan, K., Mat Isa N.A. 2010.Color image segmentation using histogram thresholding– Fuzzy C-means hybrid approach. Pattern Recognition, 44:1-15. https://doi.org/10.1016/j.patcog.2010.07.013
Wang, B., Gao, Y.S., Yuan, X.H., Xiong, S.W., Feng, X.Z.2020. From species to cultivar: Soybean cultivar
recognition using joint leaf image patterns by multiscale sliding chord matching. Biosystems engineering,194: 99-111. https://doi.org/10.1016/j.biosystemseng.2020.03.019
Wen, Z.F., Ma, M.H., Zhang, C.,Yi, X.M., Chen, J.L. and Wu, S.J. 2017. Estimating seasonal aboveground biomass of a riparian pioneer plant community: An exploratory analysis by canopy structural data. Eco. Indic., 83:441-450. https://doi.org/10.1016/j.ecolind.2017.07.048
Zanklan, S., Becker, H.C., Sørensen, M., Pawelzik, E. and Grüneberg, W.J. 2018.Genetic diversity in cultivated yam bean (Pachyrhizus spp.) evaluated through multivariate analysis of morphological and agronomic traits.Genet. Resour. Crop. Evol., 65:811-843. https://doi.org/10.1007/s10722-017-0582-5
Zhao, F., Jiao, L.C., Liu, H.Q. 2013. Kernel generalized fuzzy c-means clustering with spatial information
for image segmentation. Digital Signal Processing. 23:184-199. http://dx.doi.org/10.1016/j.dsp.2012.09.016
Zhang, C.Y., Si, Y.S., Lamkey, J. and Boydston, R.A., Garland-Campbell, K.A., Sankaran, S.2018. High-Throughput Phenotyping of Seed/Seedling Evaluation Using Digital Image Analysis. Agronomy 8:63-77.
Zhou, J.F., Chen, H.T., Zhou, J., Fu, X.Q., Ye, H. and Nguyen, H.T. 2018.Development of an automated phenotyping platform for quantifying soybean dynamic responses to salinity stress in greenhouse environment. Comput. Electron. Agric., 151: 319-330. https://doi.org/10.1016/j.compag.2018.06.016