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Assessing genetic diversity of soybean based on smartphone image-derived 1 

canopy parameter 2 
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ABSTRACT   4 

Convenient and accurate characterization of field-grown crops is essential for effective 5 

use of germplasm resources and breeding programs. In this study, we evaluated genetic 6 

relationships among 18 soybean accessions at the early growth stage using a smartphone 7 

image-derived canopy parameter, the canopy cover rate (CCR). Field experiments were 8 

conducted over two consecutive years (2021 and 2022). CCR was estimated from top-view 9 

images using image analysis software, providing a non-destructive and efficient indicator 10 

of plant morphology. CCR showed significant variation among accessions and was 11 

strongly correlated with traditional morphological / biomass traits (correlation 12 

coefficients >0.8). Multivariate analyses, including principal component analysis (PCA), 13 

hierarchical cluster analysis (HCA), and discriminant analysis (DA), revealed that CCR 14 

could effectively classify accessions, with DA achieving an average correct classification 15 

rate of 88.9%. The results suggest that CCR is a reliable index for assessing genetic 16 

diversity in field-grown soybean genotypes. This study introduces an innovative, simple, 17 

and accurate method for evaluating soybean genetic resources using image-derived 18 

parameter. 19 

Keywords: Biomass, Canopy, Genetic diversity, Image-derived parameter, Phenotyping, 20 

Soybean  21 

INTROIDUCTION 22 

Soybean (Glycine max L.) is a globally important crop, valued for its protein and oil content as 23 

well as its role in sustainable agriculture through biological nitrogen fixation research 24 

(McDonald et al., 2023). From these reasons, effective conservation and utilization of soybean 25 

genetic resources are essential for breeding programs aimed at improving yield and resilience. 26 

Traditionally, genetic diversity has been assessed using morphological traits, which are often 27 

labor-intensive, subjective, and influenced by environmental factors (Khadivi, 2018; Shahid et 28 

al., 2021). Recent advances in digital phenotyping (Liang et al.,2018; Zhang et al., 2018; Zhou 29 
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et al., 2018; Jong et al., 2021), particularly the use of smartphone-based imaging (Barman et 30 

al., 2020; Adhikari et al., 2020), offer promising alternatives for rapid, non-destructive, and 31 

objective crop characterization.  32 

A good characterization of the plant materials is necessary for the effective use of germplasm 33 

resources and further for crop improvement (Zanklan et al., 2018). Because most of 34 

morphological and biomass traits may be affected by the genotype × environment interaction, 35 

it is essential to comprehensively and accurately evaluate the different phenotypes using image-36 

derived phenotyping approach at growing stage. Wang et al. (2020) proposed a multiscale 37 

sliding chord matching method for characterising and recognising soybean cultivars from leaf 38 

images. Here, a chord was defined to slide along the leaf contour for measuring synchronized 39 

exterior shape features and interior appearance patterns of the soybean leaf image. However, 40 

the application of smartphone image-derived canopy parameters for genetic diversity 41 

assessment at the early growth stage in field-grown soybean remains unexplored. Because most 42 

of morphological / biomass traits may be affected by the genotype × environment interactions, 43 

it is essential to comprehensively and accurately evaluate the different phenotypes using image-44 

derived phenotyping approach at the growth stage. Therefore, we hypothesized that the canopy 45 

cover rate (CCR), extracted from smartphone images, could serve as a reliable index for 46 

evaluating genetic diversity among soybean accessions. The objectives of this study were to: 47 

(i) evaluate the feasibility of extracting canopy parameters using image analysis software from 48 

smartphone images at the early growth stage, and (ii) assess genetic diversity among soybean 49 

accessions based on image-derived canopy parameters. This approach has the potential to 50 

enhance the efficiency and accessibility of genetic diversity evaluation in soybean breeding 51 

programs. 52 

 53 
MATERIALS AND METHODS  54 

1. Plant material 55 

Seeds of eighteen soybean accessions were obtained from the Industrial Crops Institute, 56 

Academy of Agricultural Sciences, DPR Korea (Figure 1 and Table S1). All accessions were 57 

grown under field conditions. 58 

 59 
2. Experiment site 60 

Field experiments were conducted in experimental station (lat 39° 01′ 10 '' N, long 125° 44′ 61 

44'' E, alt 30m asl) of life science faculty of Kim Il Sung university for two consecutive years 62 

http://jast.modares.ac.ir/files/jast/user_files_749497/atch/life5_jko-A-10-72609-5-0ec7c61---f68aa6.pdf
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(2021 and 2022). The soil was classified as gray alluvial clay loam with a pH of 6.2.  Maize 63 

was grown in the  previous cropping system. 64 

 65 

3. Weather conditions in experimental site 66 

Weather data were recorded daily at a nearby meteorological station (2 km distance) and 67 

summarized in Table S2. 68 

 69 

4.  Experimental design 70 

A randomized complete block design (RCBD) was used with three replicates per accession. 71 

Each plot measured 2 m² and consisted of two rows (2m length, 60cm between rows, 30cm 72 

between plants). The number of plants per plot was 12, and total number of replicates was three. 73 

The border plants were excluded from analysis. 74 

5. Management Practices 75 

Standard agronomic practices were followed, including pre-sowing fertilization (15-15-15 N-76 

P₂O₅-K₂O at 200 kg ha⁻¹), manual weeding, and pest control with registered insecticides.  77 

 78 
6. Plant measurements 79 

Ten plants of twenty-day-old (2021) and 27-day-old (2022) plants were sampled for each 80 

accession, excluding border plants. Plant height (PH, ㎝) and root length (RL, ㎝) were 81 

measured with a ruler. For each root sampling, a block of soil (25 cm × 20 cm × 30 cm; length, 82 

width, and depth) around each individual hill was dug up using a sampling core. The roots of 83 

plant in each block of soil were carefully rinsed with a hydropneumatic elutriation device 84 

(Gillison ’s Variety Fabrications, Benzonia, MI, USA). Root samples were used for the 85 

measurement of root length (RL, ㎝). Plants were oven-dried at 70°C for 48 hours to determine 86 

plant dry mass) (PDM, g), aboveground dry mass (ADM, g) and leaf dry mass (LDM, g). 87 

 88 
7. Image Acquisition and Processing  89 

Canopy cover (top-view) images were captured using a smartphone (Type 2428, Pyongyang, 90 

DPR Korea,48 MP camera) mounted on a selfie stick at 50 cm above each plant, between 11:30 91 

and 12:30 h under natural light (Figure 2). Altogether, there were three digital images of ten 92 

plants for each accessions. Digital images stored in JPG file format.  The cost of red–green–93 

blue (RGB) image acquisition with smartphone camera is much lower than that with other 94 

optical instruments. Images were processed using IA software (Golden Field 2.0) developed 95 

http://jast.modares.ac.ir/files/jast/user_files_749497/atch/life5_jko-A-10-72609-5-0ec7c61---f68aa6.pdf
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using fuzzy c-means clustering algorithm (FCM) (Figure 3, 4 and 5). As one of the most widely 96 

used clustering methods, FCM introduces the fuzziness for the belongingness of each image 97 

pixel and can retain more information from the original image than the hard c-means clustering 98 

algorithm (Zhao et al., 2013). It is a pixels clustering process of dividing pixels into clusters so 99 

that pixels in the same cluster are as similar as possible and those in different clusters are as 100 

dissimilar as possible (Siang et al., 2010).  FCM clustering algorithm tries to partition image 101 

pixels 
N

kkx 1}{ =  into c  clusters. The standard FCM objective function was as follows. 102 
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iv  was given by 104 

the membership value 
iku  of the data point to that cluster. The membership value was 105 

calculated by minimization of a FCM function, which searches for the belongingness that 106 
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In equation above, m  is a parameter that controls the fuzziness of the clustering process. The 109 

function needs approximate cluster centers iv , as well as a metric for membership evaluation 110 

as input, e.g., the Euclidean distance: 111 

ikik vxd −=  112 

The minimization is an iterative process where new cluster centers are computed as weighted 113 

averages of all data points, where the membership values are the weights. After obtained R 114 

(red), G (green) and B (blue) values of each pixel from RGB images, these values were 115 

transformed into H(Hue), S(Saturation), V(Brightness) color system. HSV values of each 116 

pixel were used to distinguish green canopy cover pixels from background pixels using FCM 117 

clustering algorithm. Here, the number of the cluster c

 

was 3, green pixels cluster count was 118 

1, background pixels cluster count was 2.  Canopy cover rate (CCR) was calculated as the 119 

ratio of green canopy cover pixels to input image pixel gross. 120 

CCR%=(Canopy cover  pixel gross / Input image pixel gross)×100 121 

 122 

 123 
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8.  Statistical analyses 124 

Data were analyzed using IBM SPSS Statistics v21. Means, variances, coefficients of variation, 125 

and Pearson correlations were calculated. One-way ANOVA was performed for each trait. 126 

Multivariate analyses (principal component analysis (PCA), hierarchical cluster analysis (HCA) 127 

and discriminant analysis (DA)) were conducted to assess genetic diversity and group 128 

accessions. Significance was determined at p < 0.05. To determinate the comprehensive trait 129 

among the 6 traits investigated, arithmetic mean of sum of coefficients of determination (𝑅2̅̅̅̅  ) 130 

was calculated using the following formula: 131 

𝑅2̅̅̅̅ =
∑𝑟2

m−1
  (m=6; Number of the traits investigated) 132 

 133 
RESULTS 134 

1. Phenotypic variation 135 

Statistical analysis revealed significant phenotypic variation among the 18 soybean accessions 136 

at the early growth stage (Table 1). PH and biomass traits including PDM, ADM and LDM 137 

exhibited highly significant differences (p < 0.01), with coefficients of variation (CV) ranging 138 

from 12.7% to 40.0% in 2021 and from 19.3% to 42.6% in 2022. In contrast, RL showed much 139 

lower variability (CV = 6.8% in 2021, 2.0% in 2022). No significant differences were observed 140 

in RL among accessions in both years. 141 

 142 

2. Evaluation of CCR 143 

CCR was estimated from top-view images using image analysis software, providing a non-144 

destructive and efficient indicator of plant morphology. It varied significantly among 145 

accessions (Table 2). Duiguru17-1 had the highest CCR (14.01% in 2021, 29.89% in 2022), 146 

while Duiguru19-1 had the lowest (3.49% in 2021, 4.60% in 2022). CCR exhibited the highest 147 

CV among all traits (42.4% in 2021, 50.5% in 2022), indicating strong discriminatory power 148 

(Table 3).   149 

 150 
3. Correlation between CCR and morphological/biomass traits  151 

CCR showed strong, significant positive correlations (p < 0.01) with all measured 152 

morphological / biomass traits (Figure 5). In 2021, correlation coefficients ranged from 0.836 153 

(PDM) to 0.943 (RL), while in 2022, they ranged from 0.878 (PH) to 0.943 (LDM).  154 
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 Because  𝑅2̅̅̅̅   of  CCR has the highest value (0.8023 in 2021, and 0.8403 in 2022) among 𝑅2̅̅̅̅  155 

of 6 traits, CCR seems to be the comprehensive trait among all the investigated traits (Table  156 

8). 157 

 158 
4. Multivariate Analyses (PCA, HCA, DA) 159 

Data on soybean plant descriptors including PH, RL and biomass traits were checked for KMO 160 

(Kaiser-Meyer-Olkin Measure) and homogeneity of variance (Bartlett's test). The KMO value 161 

(0.808 in 2021 and 0.870 in 2022) showed that it was good, while Bartlett’s test of Sphericity 162 

with an associated p value of < 0.001 suggests that we can proceed with PCA. 163 

PCA confirmed that two principal components explained over 95% of total variance in both 164 

years (Table 5). Table 6 showed the significant correlations were detected between PC1 and 165 

PC2 with CCR (0.608 and 0.749 in 2021, and 0.715 and 0.655 in 2022, respectively). Therefore, 166 

PC1 and PC2 could explain the characteristics of 18 soybean accessions, instead of 167 

morphological / biomass traits. 168 

The individual component values in both years were calculated using the values from the 169 

component score coefficient matrix and the following equations, respectively:  170 

PC1=-0.741PH+(-0.148)RL+(0.680)PDM+(0.611)ADM+(0.361)LDM   (in 2021) 171 

PC2=(1.194)PH+(0.509)RL+(-0.475)PDM+(-0.397)ADM+(-0.094)LDM   (in 2021) 172 

PC1=-0.652PH+(-0.207)RL+(0.529)PDM+(0.533)ADM+(0.514)LDM   (in 2022) 173 

PC2=(1.115)PH+(0.583)RL+(-0.306)PDM+(-0.312)ADM+(-0.289)LDM   (in 2022) 174 

The factor loadings that resulted from Varimax rotation were generated with PCs and 175 

morphological / biomass traits (Table 7). PC1 was strongly associated with biomass traits, 176 

while PC2 was linked to plant height and root length (Table 7). Moreover, PC1 had a strong 177 

positive correlation to biomass traits (PDM, ADM and LDM) which characterize the “biomass” 178 

of the plants, while PC2 showed the close relationships with quantitative traits such as PH and 179 

RL describing “length”. Four main groups of accessions were identified based on PCA scatter 180 

plots (Figure 7). The two axes, namely, PC1 and PC2 accounted for 95.0 % (in 2021), and 181 

96.5% (in 2022) of the variability in morphological / biomass traits. 182 

According to scatter plots of PCA for morphological / biomass traits, four categories were 183 

identified among 18 accessions in both years. In detail, first category was the largest, consisting 184 

of 6 accessions, namely, Kong25-1, Kong27-1, Kong28-1, Kong29-1, KuNul5-1 and 185 

Gansokji1-1. Second category comprised Duiguru19-1, Duiguru20-1, Kangwon30-1, 186 
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Haqjak40 and KuNul3-1. Third category was composed of Kong26-1, Kangwon11-1, 187 

Duiguru21-1 and Dongnong50, and fourth category contained Duiguru13-1, Duiguru14-1 and 188 

Duiguru17-1 (Figure 7). 189 

In PCA, PC1 was positively correlated to biomass traits, respectively (0.883, 0.855 and 0.793 190 

in 2021, and 0.882, 0.883 and 0.876 in 2022), while PC2 was positively correlated to 191 

morphological traits, respectively (0.894 and 0.726 in 2021, and 0.890 and 0.736 in 2022) 192 

(Table 7).  193 

R-mode HCA was performed using between-groups linkage based on Pearson correlation 194 

coefficients to find out the relationships among the investigated traits. It showed that biomass 195 

traits had a high correlation coefficient one another, while CCR had a close similarity to 196 

biomass traits (Table 8). 197 

Soybean accessions with the similar morphological / biomass traits were clustered together in 198 

Figure 8. When using the relative distance of 5.0 and 10.0 as a threshold, 18 accessions were 199 

clustered into three main categories and seven sub-categories. First category was the largest, 200 

consisting of 12 accessions, namely, Kangwon30-1, Duiguru20-1, Kong27-1, Gansokji1-1, 201 

Duiguru19-1, Haqjak40, KuNul3-1, Kong29-1, KuNul5-1, Dongnong50, Kong25-1 and 202 

Kong28-1 in 2021, and 8 accessions, namely, Duiguru19-1, Duiguru20-1, KuNul3-1, KuNul5-203 

1, Kong28-1, Kangwon30-1, Haqjak40 and Gansokji1-1 in 2022. Second category composed 204 

of 3 accessions including Duiguru13-1, Duiguru14-1 and Duiguru17-1 in 2021, and 6 205 

accessions including Kong25-1, Kong26-1, Kong27-1, Kong29-1, Kangwon11-1 and 206 

Dongnong50 in 2022. Third category consisted of 3 accessions, namely, Kangwon11-1, 207 

Duiguru 21-1 and Kong 26-1 in 2021, and 4 accessions, namely, Duiguru13-1, Duiguru14-1, 208 

Duiguru17-1 and Duiguru21-1 in 2022.  209 

When 18 accessions were grouped based on CCR, the dendrograms obtained by HCA were 210 

shown in Figure 9. Four major categories could be detected using the relative distance of 5.0 211 

and 10.0 as a threshold. First category was the largest, consisting of 6 accessions, namely, 212 

Kong27-1, Kong28-1, Kong29-1, KuNul5-1, Dongnong50 and Gansokji1-1 in 2021 and 2022. 213 

Second category consisted of 5 accessions, namely, Kangwon30-1, Duiguru19-1, Duiguru20-214 

1, Haqjak40 and KuNul3-1 in 2021 and 2022. Third category comprised of Kong25-1, Kong26-215 

1, Kangwon11-1 and Duiguru21-1 in 2021 and 2022. Fourth category included Duiguru13-1, 216 

Duiguru14-1 and Duiguru17-1 in 2021 and in 2022.  217 
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Because it was able to classify four major categories, results of HCA based on CCR were more 218 

similar to the ones suggested by the PCA than clustering based on morphological / biomass 219 

traits. 220 

The group centroid of categories (the first, second, third, fourth category were -0.478, -3.276, 221 

1.295, 4.690 in 2021 and -0.282, -2.502, 0.799, 3.668 in 2022, respectively) was calculated 222 

according to the following equations using unstandardized coefficients. 223 

D = (0.907) CCR-6.796   (in 2021) 224 

D = (0.306) CCR-4.529   (in 2022) 225 

As results of DA for CCR, Kong25-1 of first category was classified into third category and 226 

Dongnong50 of third category was classified into first category in 2021. However, Kong25-1 227 

was classified into third category and Dongnong50 was classified into second category in 2022. 228 

The percentage of correctly classified on the basis of CCR was 88.9% of grouped cases by 229 

PCA. For first category 83.3% of the cases were classified correctly, and 75.0% of the cases 230 

were classified correctly for third category. Especially, the classification rate of second 231 

category and fourth category was 100% (Table 9). 232 

 233 
DISCUSSION 234 

To our knowledge, although image-derived phenotyping has been explored in various crops, 235 

its application for genetic diversity assessment at the early growth stage in soybean remains 236 

largely unaddressed. In this study, we demonstrated that CCR derived from smartphone images 237 

is a robust and efficient index for evaluating genetic diversity among field-grown soybean 238 

accessions at the early growth stage. The high correlations observed between CCR and 239 

traditional morphological / biomass traits confirm the reliability of this image-derived 240 

parameter as an indirect measure of plant growth and architecture. These findings are consistent 241 

with recent reports on the utility of digital phenotyping in crop improvement (Zhou et al., 2018; 242 

Zhang et al., 2018), but to our knowledge, this is the first study to apply such an approach for 243 

genetic diversity assessment in soybean at early developmental stages. 244 

Traditionally, several quantitative traits have been used to determine the genetic diversity and 245 

classify germplasm resources in many plants (Gadissa et al., 2020; Shahid et al., 2021). 246 

However, measuring quantitative traits such as plant height and biomass is the labor-intensive 247 

and time-consuming in large breeding populations and field environments (Jiang et al., 2016; 248 
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Amaral et al., 2015). Furthermore, conventional measuring on biomass traits has been obtained 249 

using the destructive method such as the drying in an oven (Wen et al. 2017). 250 

In this study, CCR was estimated using IA software from RGB image without any significant 251 

alteration of plant morphology at the early growth stage. Moreover, estimation of CCR using 252 

IA software from canopy images taken by the smartphone camera seems to be suitable for 253 

young  plants grown in field environment. 254 

 HCA produced similar groupings, especially when based on CCR. DA achieved an average 255 

correct classification rate of 88.9%, supporting the utility of CCR for distinguishing genetic 256 

diversity among accessions.  257 

A multiscale sliding chord matching method was proposed to characterize and recognize 258 

soybean cultivars using joint leaf image patterns (Wang et al., 2020). Here, to obtain soybean 259 

cultivar leaf image database researchers used the destructive method to take the individual leaf 260 

image from the lower, middle and upper parts of the plants of one soybean cultivar, respectively. 261 

However, we employed the non-destructive method to take canopy image using a smartphone 262 

camera from individual soybean plant in field environment.  263 

The results above provided the support for the hypothesis that that smartphone image-derived 264 

CCR could serve as a simple, accurate, and non-destructive index for evaluating genetic 265 

diversity among field-grown soybean accessions at the early growth stage.  266 

Because the present approach using CCR as a genetic diversity index uses a smartphone camera 267 

for capturing  digital images in the field environment, it is far simpler and lower-cost than the 268 

complex and expensive system using LiDAR-based Canopy Height Model, also known as a 269 

normalized Digital Surface Model  (An et al., 2016) and Normalized Difference Vegetation 270 

Index  using remote sensing (Rees et al., 2020 ) and Leaf Area Index (LAI)  estimated by 271 

Terrestrial Laser Scanning (Chen et al., 2018). 272 

The present approach is adequate to the early growth stage of crops, but is inadequate to the 273 

maturing period of high crops such as maize, sugarcane and sorghum, because capturing the 274 

top-view canopy image for high plants is difficult with smartphone camera.  275 

Overall, our findings supported the use of smartphone image-derived CCR as a practical and 276 

effective tool for genetic diversity assessment in soybean, paving the way for more efficient 277 

phenotyping and breeding strategies.  278 

Further validation in larger and more diverse populations, as well as at later growth stages, is 279 

recommended to confirm the generalizability of these findings. 280 
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CONCLUSIONS  281 

In summary, this study demonstrated that CCR, extracted from smartphone images, is a robust 282 

and efficient index for evaluating genetic diversity among field-grown soybean accessions at 283 

the early growth stage. The strong correlation between CCR and traditional morphological / 284 

biomass traits, together with high classification accuracy in multivariate analyses, highlights 285 

the practical value of this approach. By leveraging accessible and low-cost smartphone 286 

technology, this method offers a rapid, non-destructive alternative to conventional phenotyping, 287 

making it particularly suitable for breeding programs and genetic resource management in 288 

resource-limited environments. While further validation across broader germplasm collections 289 

and developmental stages is warranted, our findings support the integration of image-derived 290 

canopy parameters into modern crop improvement pipelines. 291 

 292 
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Table 1.Statistical parameters for morphological / biomass traits utilized at the early growth 376 
stage in 18 accessions. 377 

Traits Abbreviation 

in 2021 in 2022 

Min Max Mean SD 
CV 

(%) 
Min Max Mean SD 

CV 

(%) 

Plant height PH 9.8 14.0 11.48 1.46 12.7 12.4 22.3 16.4 3.16 19.3 

Root length RL 10.9 13.4 12.01 0.82 6.8 21.5 23.1 22.3 0.44 2.0 

Plant dry mass PDM 0.34 1.22 0.72 0.24 33.3 0.64 2.82 1.55 0.64 41.3 

Aboveground plant dry 

mass 
ADM 0.27 0.90 0.56 0.19 33.9 0.51 2.30 1.22 0.52 42.6 

Leaf dry mass per plant LDM 0.16 0.71 0.40 0.16 40.0 0.32 1.45 0.78 0.32 41.0 

SD: Standard Deviation, CV: Coefficient of Variation. 

  378 

Table 2. CCRs at the early growth stage in 18 accessions. 379 

Accessions 
CCRs (%) 

in 2021 in 2022 

Kong 25-1 8.80±0.13g,* 19.32±0.65f,* 

Kong 26-1 10.11±0.09d,* 18.20±0.47g,* 

Kong 27-1 7.02±0.09i,* 15.54±0.38h,* 

Kong 28-1 7.61±0.10h,* 12.60±0.31i,* 

Kong 29-1 6.52±0.02j,* 12.79±0.37i,* 

Kangwon11-1 9.42±0.11f,* 20.04±0.52e,* 

Kangwon 30-1 4.51±0.10m,* 8.51±0.21l,* 

KuNul 5-1 6.11±0.02k,* 11.49±0.26j,* 

Duiguru13-1 11.82±0.15c,* 26.71±0.71b,* 

Duiguru14-1 12.2±0.11b,* 23.67±0.65c,* 

Duiguru17-1 14.01±0.79a,* 29.89±0.79a,* 

Duiguru19-1 3.49±0.10n,* 4.60±0.12p,* 

Duiguru20-1 4.10±0.10n,* 7.70±0.19m,* 

Duiguru21-1 9.61±0.10e,* 21.14±0.34d,* 

Haqjak40 3.72±0.02p,* 6.31±0.14n,* 

Dongnong50 6.60±0.16j,* 10.19±0.17k,* 

Gansokji1-1 5.78±0.08l,* 11.43±0.15j,* 

KuNul3-1 3.61±0.11o,* 5.97±0.14o,* 

Values are means±standard errors with results of statistical analysis, Total pixel counts= 84500 (n= 20), *Means 380 
in column followed by the same letters are not significantly different at P< 0.05 level by the Fisher’s LSD test.  381 
 382 

Table 3. Descriptive statistics for CCR among 18 accessions. 383 

Trait 

in 2021 in 2022 

Min Max Mean SD 
CV 

(%) 
Min Max Mean SD 

CV 

(%) 

CCR 3.49 14.01 7.50 3.18 42.40 4.60 29.89 14.78 7.46 50.47 

  384 
Table 4.The arithmetic mean of R2 between the investigated traits. 385 

Traits 
𝑹𝟐̅̅̅̅  

in 2021 in 2022 

PH 0.7029 0.6574 

RL 0.7964 0.7330 

PDM 0.7577 0.8322 

ADM 0.7566 0.8326 

LDM 0.7829 0.8347 

CCR 0.8023 0.8403 

 386 
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Table 5. Percentage of variance and cumulative variance, and eigenvalues for two principal 387 
components 388 

 

in 2021 in 2022 

Eigenvalues 
Percentage of 

variance (%) 

Percentage of 

cumulative 

variance (%) 

Eigenvalues 
Percentage of 

variance (%) 

Percentage of 

cumulative 

variance (%) 

PC1 4.457 89.134 89.134 4.484 89.683 89.683 

PC2 0.295 5.898 95.032 0.341 6.822 96.505 

 389 
Table 6. Correlation coefficients between PC1 and PC2 with CCR. 390 

CCR 

 
 in 2021 in 2022 

Component 1 Component 2 Component 1 Component 2 

Pearson Correlation 0.608** 0.749** 0.715** 0.655** 

Sig.(2-tailed) 0.007 0.000 0.001 0.003 

N 18 18 18 18 

Results marked with **are significant at the 0.01 probability levels. 

 391 
Table 7. Rotated component matrix with Varimax. 392 

 
in 2021  in 2022 

Component 1 Component 2 Component 1 Component 2 

PH 0.425 0.894 0.407 0.890 

RL 0.640 0.726 0.593 0.736 

PDM 0.883 0.435 0.882 0.464 

ADM 0.855 0.451 0.883 0.462 

LDM 0.793 0.550 0.876 0.469 

 393 
Table 8. The agglomeration schedule between morphological / biomass traits and CCR. 394 

Stage 

 in 2021 in 2022 

Cluster 

Combined Coe 

Stage Cluster 

First Appears 
Next 

Stage 

Cluster 

Combined Coe 

Stage Cluster 

First Appears 
Next 

Stage 
C1 C2 C1 C2 C1 C2 C1 C2 

1 RL CCR 0.943 0 0 4 PDM ADM 0.994 0 0 2 

2 PDM LDM 0.937 0 0 3 PDM LDM 0.988 1 0 3 

3 PDM ADM 0.904 2 0 5 PDM CCR 0.935 2 0 4 

4 RH RL 0.902 0 1 5 RL PDM 0.862 0 3 5 

5 PH PDM 0.849 4 3 0 PH RL 0.810 0 4 0 

C1 Cluster 1, C2 Cluster 2, Coe Coefficient 

 395 
Table 9.  Percentage of 18 accessions classified in each category by DA. 396 

  in 2021 in 2022 

category 
Predicted category Membership 

Total 
Predicted category Membership 

Total 
1 2 3 4 1 2 3 4 

Original Count 

1 5 0 1 0 6 5 0 1 0 6 

2 0 5 0 0 5 0 5 0 0 5 

3 1 0 3 0 4 0 1 3 0 4 

4 0 0 0 3 3 0 0 0 3 3 

 % 

1 83.3 0.0 16.7 0.0 100.0 83.3 0.0 16.7 0.0 100.0 

2 0.0 100.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 

3 25.0 0.0 75.0 0.0 100.0 0.0 25.0 75.0 0.0 100.0 

4 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0 

88.9% of original grouped cases was correctly classified 
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 397 

 398 

Figure 1. Soybean seeds in various accessions (online color). A) Kong25-1, B) Kong26-1, C) 399 
Kong27-1, D) Kong28-1, E) Kong29-1, F) Kangwon1-1, G) Kangwon30-1, H) KuNul5-1, I) 400 
Duiguru13-1, J) Duiguru14-1, K) Duiguru17-1, L) Duiguru19-1, M) Duiguru20-1, N) 401 

Duiguru21-1, O) Haqjak40, P) Dongnong50, Q) Gansokji1-1, R) KuNul3-1. 402 
 403 

 404 

Figure 2. Acquiring canopy image using a smartphone camera fixed with the selfie stick under 405 
natural light in field (online color). 406 

 407 

 408 

Figure 3. Canopy image processing using FCM algorithm (online color). 409 
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Figure 4. Original canopy image datasets taken from a plant grown during 20 days after sowing 410 
in 18 accessions (left) and corresponding canopy RGB images of processed with IA software 411 

(right) in 2021 (online color). A) Kong25-1, B) Kong26-1, C) Kong27-1, D) Kong28-1, 412 
E )Kong29-1, F) Kangwon11-1, G) Kangwon30-1, H) KuNul5-1, I) Duiguru13-1,J) 413 

Duiguru14-1, K) Duiguru17-1, L) Duiguru19-1, M) Duiguru20-1, N) Duiguru21-1, O) 414 
Haqjak40, P) Dongnong50, Q) Gansokji1-1, R) KuNul3-1. 415 
 416 
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Figure 5. Original canopy image datasets taken from a plant grown during 27 days after sowing 417 
in 18 accessions (left) and corresponding canopy RGB images of processed with IA software 418 

(right) in 2022 (online color). A) Kong25-1, B) Kong26-1, C) Kong27-1, D) Kong28-1, 419 
E )Kong29-1, F) Kangwon11-1, G) Kangwon30-1, H) KuNul5-1, I) Duiguru13-1,J) 420 
Duiguru14-1, K) Duiguru17-1,L) Duiguru19-1, M) Duiguru20-1, N) Duiguru21-1, O) 421 
Haqjak40, P) Dongnong50, Q) Gansokji1-1, R) KuNul3-1. 422 

 423 
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 424 
Figure 6. Heatmap of Pearson correlation coefficients between CCR and morphological/ 425 

biomass traits in 18 accessions. 426 
 427 

 
   (in 2021) 

 

  
(in 2022) 

Figure 7. Scatter plots by PCA based on morphological/biomass traits (online color).  428 



Journal of Agricultural Science and Technology (JAST), 28(1) 

In Press, Pre-Proof Version 
 

20 

 

 
(in 2021) 

 
in 2022) 

Figure 8. Average linkage, rescaled distance cluster combine dendrograms obtained by HCA 429 
of the 18 accessions based on five morphological / biomass traits (online color). 430 

 431 

 
(in 2021) 

 
(in 2022) 

Figure 9. Average linkage, rescaled distance cluster combine dendrograms obtained by HCA 432 
of the 18 accessions based on CCR (online color). 433 




