[1] A.S. Singh, S.K. Parahoo, M. Ayyagari, T.D. Juwaheer, Conclusion: how could rural tourism provide better support for well-being and socioeconomic development?, Worldw. Hosp. Tour. Themes., 15 (2023) 84-93.
[2] N. Hariram, K. Mekha, V. Suganthan, K. Sudhakar, Sustainalism: An integrated socio-economic-environmental model to address sustainable development and sustainability, Sustain., 15 (2023) 10682.
[3] W. Bank, World development report 2018: Learning to realize education's promise, The World Bank 2017.
[4] M.H. Emon, M.N. Nipa, Exploring the Gender Dimension in Entrepreneurship Development: A Systematic Literature Review in the Context of Bangladesh, Westcliff Int. J. Appl. Res., 8 (2024) 34-49.
[5] M. Umar, M.M. Wilson, Inherent and adaptive resilience of logistics operations in food supply chains, J. Bus. Logist., 45 (2024) e12362.
[6] M. Metta, J. Dessein, G. Brunori, Between on-site and the clouds: Socio-cyber-physical assemblages in on-farm diversification, J. Rural Stud., 105 (2024) 103193.
[7] A. Glaros, R. Newell, A. Benyam, S. Pizzirani, L.L. Newman, Vertical agriculture’s potential implications for food system resilience: outcomes of focus groups in the Fraser Valley, British Columbia, Ecology and Society, 29 (2024).
[8] F.A. Kitole, F.Y. Tibamanya, J.K. Sesabo, Exploring the nexus between health status, technical efficiency, and welfare of small-scale cereal farmers in Tanzania: A stochastic frontier analysis, J. Agric. Food Res., (2024) 100996.
[9] R. Wazirali, E. Yaghoubi, M.S.S. Abujazar, R. Ahmad, A.H. Vakili, State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques, Electr. Power Syst. Res., 225 (2023) 109792.
[10] M. Kurucan, M. Özbaltan, Z. Yetgin, A. Alkaya, Applications of artificial neural network based battery management systems: A literature review, Renew. Sustain. Energy Rev., 192 (2024) 114262.
[11] E.S. Puchi-Cabrera, E. Rossi, G. Sansonetti, M. Sebastiani, E. Bemporad, Machine learning aided nanoindentation: A review of the current state and future perspectives, Curr. Opin. Solid State Mater. Sci., 27 (2023) 101091.
[12] K.B.W. Boo, A. El-Shafie, F. Othman, M.M.H. Khan, A.H. Birima, A.N. Ahmed, Groundwater Level Forecasting with Machine Learning Models: A Review, Water Res., (2024) 121249.
[13] G.U. Alaneme, K.A. Olonade, E. Esenogho, Critical review on the application of artificial intelligence techniques in the production of geopolymer-concrete, SN Appl. Sci., 5 (2023) 217.
[14] Y. Akkem, S.K. Biswas, A. Varanasi, Smart farming using artificial intelligence: A review, Eng. Appl. Artif. Intell., 120 (2023) 105899.
[15] I. Attri, L.K. Awasthi, T.P. Sharma, P. Rathee, A review of deep learning techniques used in agriculture, Ecol. Inform., (2023) 102217.
[16] O. Folorunso, O. Ojo, M. Busari, M. Adebayo, A. Joshua, D. Folorunso, C.O. Ugwunna, O. Olabanjo, O. Olabanjo, Exploring machine learning models for soil nutrient properties prediction: A systematic review, Big Data Cogn. Comput., 7 (2023) 113.
[17] N. Nandgude, T. Singh, S. Nandgude, M. Tiwari, Drought prediction: a comprehensive review of different drought prediction models and adopted technologies, Sustain., 15 (2023) 11684.
[18] X. Li, J. Jiang, J. Cifuentes-Faura, The impact of logistic environment and spatial spillover on agricultural economic growth: An empirical study based on east, central and west China, PLoS One, 18 (2023) e0287307.
[19] H. Ding, Y. Liu, Y. Zhang, S. Wang, Y. Guo, S. Zhou, C. Liu, Data-driven evaluation and optimization of the sustainable development of the logistics industry: Case study of the Yangtze River Delta in China, Environ. Sci. Pollut. Res. Int., 29 (2022) 68815-68829.
[20] S. Qi, Z. Huang, L. Ji, Sustainable Development Based on Green GDP Accounting and Cloud Computing: A Case Study of Zhejiang Province, Sci. Program., 2021 (2021) 1-8.
[21] Y. Qu, J. Li, S. Wang, Green total factor productivity measurement of industrial enterprises in Zhejiang Province, China: A DEA model with undesirable output approach, Energy Rep., 8 (2022) 307-317.
[22] Y. Xu, Logistic development along the Yangtze River economic belt, Contemporary Logistics in China: New Horizon and New Blueprint, (2016) 121-152.
[23] G. Liu, D.M. Doronzo, A novel approach to bridging physical, cultural, and socioeconomic indicators with spatial distributions of Agricultural Heritage Systems (AHS) in China, Sustain., 12 (2020) 6921.
[24] C. Nhemachena, L. Nhamo, G. Matchaya, C.R. Nhemachena, B. Muchara, S.T. Karuaihe, S. Mpandeli, Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development, Water, 12 (2020) 2673.
[25] A. Raihan, A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors, J. of Environ. Sci. Econom., 2 (2023) 36-58.
[26] S. Singh, K.S. Babu, S. Singh, Machine learning approach for climate change impact assessment in agricultural production, Visualization techniques for climate change with machine learning and artificial intelligence, Elsevier (2023), pp. 317-335.
[27] Y. Dou, R.F.B. Da Silva, M. Batistella, S. Torres, E. Moran, J. Liu, Mapping crop producer perceptions: The role of global drivers on local agricultural land use in Brazil, Land Use Policy, 133 (2023) 106862.
[28] B. Wu, F. Chen, L. Li, L. Xu, Z. Liu, Y. Wu, Institutional investor ESG activism and exploratory green innovation: Unpacking the heterogeneous responses of family firms across intergenerational contexts, Br. Account. Rev., (2024) 101324.
[29] X. Li, Y. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. Appl., 33 (2021) 8227-8235.
[30] A. Xu, K. Qiu, Y. Zhu, The measurements and decomposition of innovation inequality: Based on Industry− University− Research perspective, J. Bus. Res., 157 (2023) 113556.
[31] H. Guan, J. Huang, L. Li, X. Li, S. Miao, W. Su, Y. Ma, Q. Niu, H. Huang, Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data, Remote Sens. Environ., 295 (2023) 113714.
[32] B. He, L. Yin, Prediction modelling of cold chain logistics demand based on data mining algorithm, Math. Probl. Eng., 2021 (2021) 1-9.
[33] X. Li, Y. Sun, Stock intelligent investment strategy based on support vector machine parameter optimization algorithm, Neural Comput. Appl., 32 (2020) 1765-1775.
[34] C. Jiang, Y. Wang, Z. Yang, Y. Zhao, Do adaptive policy adjustments deliver ecosystem-agriculture-economy co-benefits in land degradation neutrality efforts? Evidence from southeast coast of China, Environ. Monit. Assess., 195 (2023) 1215.
[35] Q. Li, J. Hu, B. Yu, Spatiotemporal patterns and influencing mechanism of urban residential energy consumption in China, Energies, 14 (2021) 3864.
[36] F. Hu, Q. Ma, H. Hu, K.H. Zhou, S. Wei, A study of the spatial network structure of ethnic regions in Northwest China based on multiple factor flows in the context of COVID-19: Evidence from Ningxia, Heliyon, 10 (2024).
[37] J. Luo, C. Zhao, Q. Chen, G. Li, Using deep belief network to construct the agricultural information system based on Internet of Things, J. Supercomput., 78 (2022) 379-405.
[38] B. Li, G. Li, J. Luo, Latent but not absent: the ‘long tail’nature of rural special education and its dynamic correction mechanism, PLoS One, 16 (2021) e0242023.
[39] C. Chen, J. Pan, The effect of the health poverty alleviation project on financial risk protection for rural residents: evidence from Chishui City, China, Int. j. equity health, 18 (2019) 1-16.
[40] J. Jia, L. Yin, C. Yan, Urban-rural logistics coupling coordinated development and urban-rural integrated development: Measurement, influencing factors, and countermeasures, Math. Probl. Eng., 2022 (2022).
[41] S. Zhang, C. Zhang, Z. Su, M. Zhu, H. Ren, New structural economic growth model and labor income share, J. Bus. Res., 160 (2023) 113644.
[42] J. Li, M. Ye, R. Pu, Y. Liu, Q. Guo, B. Feng, R. Huang, G. He, Spatiotemporal change patterns of coastlines in Zhejiang Province, China, over the last twenty-five years, Sustain., 10 (2018) 477.
[43] Q. Jiang, J. He, G. Ye, G. Christakos, Heavy metal contamination assessment of surface sediments of the East Zhejiang coastal area during 2012–2015, Ecotoxicol. Environ. Saf., 163 (2018) 444-455.
[44] J.-l. Cheng, S. Zhou, Y.-w. Zhu, Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China, J. Environ. Sci., 19 (2007) 50-54.
[45] C. Zhu, Y. Lin, J. Zhang, M. Gan, H. Xu, W. Li, S. Yuan, K. Wang, Exploring the relationship between rural transition and agricultural eco-environment using a coupling analysis: A case study of Zhejiang Province, China, Ecol. Indic., 127 (2021) 107733.
[46] J. Tian, Y. Han, J. Shen, Y. Zhu, Leveraging sustainable development of agriculture with sustainable water management: The empirical investigation of “Five Water Cohabitation” of Zhejiang Province in China, Environ. Monit. Assess., 194 (2022) 124.
[47] Y. Wang, X. Wang, W. Chen, L. Qiu, B. Wang, W. Niu, Exploring the path of inter-provincial industrial transfer and carbon transfer in China via combination of multi-regional input–output and geographically weighted regression model, Ecol. Indic., 125 (2021) 107547.
[48] W. Yue, J. Gao, X. Yang, Estimation of gross domestic product using multi-sensor remote sensing data: A case study in Zhejiang province, East China, Remote Sens., 6 (2014) 7260-7275.
[49] C. Shi, Y. He, H. Li, How does ecological poverty alleviation contribute to improving residents' sustainable livelihoods?—Evidence from Zhejiang Province, China, Sustain. Prod. Consum., 41 (2023) 418-430.
[50] Z. Hu, G. Song, Z. Hu, B. Zhang, T. Lin, How to promote the balanced development of urban and rural China? Evidences from reallocating idle rural residential land of Zhejiang province, China, Plos one, 18 (2023) e0287820.
[51] Q. Gao, H. Chen, M. Zhao, M. Zeng, Research on the Impact and Spillover Effect of Green Agricultural Reform Policy Pilot on Governmental Environmental Protection Behaviors Based on Quasi-Natural Experiments of China’s Two Provinces from 2012 to 2020, Sustain., 15 (2023) 2665.
[52] X. Wu, B. Peng, Urban comprehensive carrying capacity analysis in Zhejiang Province of China from the perspective of production, living, and ecological spaces, Geo-Spat. Inf. Sci., (2024) 1-20.
[53] W. Wu, Y. Zhu, Y. Wang, Spatio-temporal pattern, evolution and influencing factors of forest carbon sinks in Zhejiang Province, China, Forests, 14 (2023) 445.
[54] F. Cao, H. Wang, C. Zhang, W. Kong, Social Vulnerability Evaluation of Natural Disasters and Its Spatiotemporal Evolution in Zhejiang Province, China, Sustain., 15 (2023) 6400.
[55] L. Jiang, X. Chen, W. Liang, B. Zhang, Alike but also different: a spatiotemporal analysis of the older populations in Zhejiang and Jilin provinces, China, BMC Public Health, 23 (2023) 1529.
[56] J. Huang, P. Shi, Regional rural and structural transformations and farmer's income in the past four decades in China, China Agric. Econ. Rev., 13 (2021) 278-301.
[57] S. Hu, Y. Yang, H. Zheng, C. Mi, T. Ma, R. Shi, A framework for assessing sustainable agriculture and rural development: A case study of the Beijing-Tianjin-Hebei region, China, Environ. Impact Assess. Rev., 97 (2022) 106861.
[58] I.H.V. Gue, A.T. Ubando, M.-L. Tseng, R.R. Tan, Artificial neural networks for sustainable development: a critical review, Clean Technol. Environ. Policy, 22 (2020) 1449-1465.
[59] Z.H. Munim, H.-J. Schramm, Forecasting container freight rates for major trade routes: a comparison of artificial neural networks and conventional models, Marit. Econ. Logist., 23 (2021) 310-327.