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Application of Artificial Neural Networks for Optimizing
Coordinated Development between Agriculture and Logistics

in Zhejiang Province: A Case Study on Rural
Revitalization Strategies

Weiping Wang'*, Youcheng Shan', and Jianping Jing”
ABSTRACT

This study applies Artificial Neural Networks (ANNs) to assess the impact of climate
factors on the collaborative development of agriculture and logistics in Zhejiang, China.
The ANN model investigates how average temperature and rainfall from 2017-2022
influence crop yield, water usage, energy demand, logistics efficiency, and economic
growth at yearly and seasonal scales. By training the neural network using temperature
and rainfall data obtained from ten weather stations, alongside output indicators sourced
from statistical yearbooks, the ANN demonstrates exceptional precision, yielding an
average R” value of 0.9725 when compared to real-world outputs through linear
regression analysis. Notably, the study reveals climate-induced variations in outputs, with
peaks observed in crop yield, water consumption, energy usage, and economic growth
during warmer summers that surpass historical norms by 1-2°C. Furthermore, the
presence of subpar rainfall ranging from 20-30 mm also exerts an influence on these
patterns. Seasonal forecasts underscore discernible reactions to climatic factors, especially
during the spring and summer seasons. The findings underscore the intricate relationship
between environmental and economic factors, indicating progress in agricultural
practices, with vulnerability to short-term climate fluctuations. The study emphasizes the
necessity of adapting supply management to address increased water demands and
transitioning to clean energy sources due to rising energy consumption. Moreover,

optimizing logistics requires strategic seasonal infrastructure planning.
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INTRODUCTION

Rural areas across the globe encounter
significant developmental challenges that
must be addressed in order to enhance the
well-being of rural communities (Singh et
al., 2023; Hariram, et al. 2023). Given that
nearly 50% of the global population resides
in rural areas, it becomes imperative to
cultivate collaborative and synergistic
development between the agriculture and
logistics sectors for the purpose of attaining

sustainable rejuvenation of rural regions
(World Bank. 2018; Emon and Nipa, 2024).
Agriculture and logistics are closely
intertwined, since agricultural activities rely
on efficient transportation and distribution
systems, while logistics networks depend on
agricultural ~ production.  Nevertheless,
optimizing these interconnected sectors to
stimulate economic growth and alleviate
poverty in rural regions necessitates a
nuanced understanding and informed
decision-making process (Umar and Wilson,
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2024; Metta et al. 2024).

ANNSs have emerged as valuable modeling
tools for analyzing intricate systems and
predicting patterns based on given inputs.
ANNs operate through interconnected
processing units within their architectures,
enabling them to identify patterns and learn
from observational data through iterative
training (Wazirali, et al., 2023; Puchi-Cabrera,
et al., 2023). Upon completion of the training
process, ANNs possess the capability to
generate predictions by extrapolating from the
acquired patterns during the training phase.
Previous  scholarly investigations have
effectively utilized ANNs to anticipate crop
yields, optimize transportation routes, and
forecast energy consumption, employing
pertinent climatic and economic variables
(Boo et al, 2024; Akkem, et al. 2023).
However, there is a scarcity of research that
comprehensively investigates the dynamic
factors influencing collaborative agricultural
and logistical development over time,
particularly with regard to temporal variations
(Attri, et al., 2023; Nandgude, et al., 2023).

Zhejiang Province, located in China, has
witnessed remarkable growth, but it still
grapples with challenges in rural development.
The agricultural and logistics sectors play a
crucial role in the province's economy, with
agriculture contributing to more than 6% of its
GDP in 2020, while logistical services account
for nearly 10% (Li et al., 2023; Ding et al.
2022). However, rural communities in
Zhejiang continue to face issues related to the
impacts of climate change, inefficient use of
resources, and the absence of coordinated
policies (Qi, et al., 2021; Qu et al. 2022).
Enhancing  the  connections  between
agricultural production and logistics networks
holds promise for stimulating economic
growth and improving the quality of life in
rural areas of Zhejiang (Xu, 2016; Liu and
Doronzo, 2020).

Variations in climatic conditions across
diverse seasons and years exert substantial
influence on agricultural productivity and
energy  necessities.  Temperature  and
precipitation emerge as the principal climatic
elements that shape crop yields, irrigation
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requirements, and the logistical infrastructure
supporting agricultural activities (Nhemachena
et al. 2020; Raihan 2023). Comprehending the
manner in which these climatic variables
impact crucial agricultural and logistical
outcomes across distinct temporal intervals
can facilitate the identification of suitable
adaptations and the formulation of informed
policies. ANNs provide a promising avenue
for gaining insights into these intricate
interactions. However, limited research has
employed this approach to examine rural
development while considering seasonal and
annual input data. The next section provides a
review of the existing literature on the
applications of ANNs in the fields of
agriculture, logistics, and rural development
assessment (Singh et al., 2023; Dou et al.
2023).

According to prior research, numerous
scholars have documented their findings
within diverse management domains (Wu et
al, 2024; He and Yin 2021). Their reports
have made substantial contributions to the
progression of knowledge across a wide range
of disciplines (Li and Sun 2020; Hu et al.,
2024). Consequently, acknowledging and
considering previous research can establish a
solid basis for the current study, as well as for
future investigations (Luo ef al.; Zhang et al.,
2023). Previous studies have utilized ANNs to
analyze factors in agriculture, logistics, and
rural development separately. However, there
is a lack of comprehensive research that
explores the interactions between climatic
drivers affecting both farm production and
transportation networks over time.
Understanding these seasonal and annual
variations is  critical for  optimizing
collaborative agricultural-logistical
development and making evidence-based
decisions for rural revitalization. To address
this gap, an ANN model was developed in this
study to analyze key factors related to
agricultural optimization and energy security
in Zhejiang Province, China. The model
considers temperature and rainfall inputs from
different years and seasons to gain insights
into dynamic patterns and relationships using
multi-year datasets from 2017 to 2022. The
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primary objective of this study was to explore
the impact of climatic variables on various

outcomes, including crop yield, water
consumption,  energy  usage, logistics
efficiency, and economic growth within

specific temporal intervals. To achieve this
goal, a feedforward neural network
architecture was utilized. The training process
of the optimized network will involve the
incorporation of average temperature and
rainfall data obtained from weather stations,
alongside output indicators extracted from
statistical yearbooks. The performance of the
model would be assessed quantitatively using
linear regression analysis against actual
outputs. By applying this novel methodology
to location-specific temporal datasets, the
study aimed to provide statistically robust
predictive insights through pattern recognition.

MATERIALS AND METHODS

Study Area

Zhejiang Province 1is situated in the
southeastern coast of China, spanning
longitudes 117°-123° E and latitudes 27°-
31° N. It covers a total land area of 101,800
square kilometers and is strategically located
adjacent to the prosperous economic region
of the Yangtze River Delta (Zhejiang
Provincial Bureau of Statistics, 2022). The
province benefits from a humid subtropical
climate, which is favorable for diverse
agricultural production. The average annual
temperature ranges from 15 to 18°C, and the
region receives an average annual
precipitation of 1,150-1,650 mm (Li et al.,
2018; Cheng et al., 2007).

Agriculture has long been a significant
driver of the economy in Zhejiang Province.
The cultivated land area encompasses
approximately 4.7 million hectares and is
primarily utilized for the cultivation of
various crops, including rice, wheat, maize,
peanuts, cotton, sugarcane, and fruit trees
(Zhejiang Provincial Bureau of Statistics,
2021). The province exhibits a significant
focus on cultivating major crops such as
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rice, wheat, maize, sweet potatoes,
vegetables, and fruits. Additionally, fisheries
and livestock rearing activities play a
substantial role in augmenting the overall

agricultural output. In 2020, the total
agricultural output value of Zhejiang
Province amounted to ¥745.36 billion

(~$107 billion), accounting for around 7.2%
of the province's GDP (Zhu et al., 2021,
Tian, et al. 2022).

Due to its strategic geographical location,
well-developed transportation network, the
economic importance of agriculture and
logistics, as well as the urgent necessity of
rural revitalization, Zhejiang Province
emerges as an opportune region for the
current research endeavor. Conducting a
thorough examination of the agricultural and
logistics sectors, encompassing the gathering
of localized climatic, input-output, and
socio-economic data, holds the potential to
yield predictive insights that can inform the
formulation of more  synchronized
development  policies. The proposed
approach, utilizing ANN modeling, aims to
make a valuable contribution in this
direction by leveraging temporal datasets
specific to Zhejiang Province.

Data Collection

To construct an effective predictive model,
it is essential to gather accurate and
representative data. This study relies on data
collected from local meteorological stations
and statistical yearbooks and previous
studies (Li et al, 2017, Hu et al., 2022)
covering the period from 2017 to 2022. For
the input variables, climate data including
average temperature (°C) and rainfall (mm)
were obtained from  the China
Meteorological Administration. Zhejiang
Province benefits from a dense network of
177 automated weather stations that record
daily meteorological observations
electronically  (Zhejiang Meteorological
Bureau, 2022). Data from 10 selected
stations  within the province were
consolidated to compute annual and seasonal
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means for the input variables. The seasons
were delineated as Spring (March-May),
Summer (June-August), Autumn
(September-November), and Winter
(December-February). In order to establish
climatic benchmarks for the study duration,
data spanning from 1987 to 2016 were
gathered from 39 nationally representative
primary stations (National Climate Center,
2022). This enabled the assessment of
deviations from the normative conditions
encountered on an annual and seasonal basis
between 2017 and 2022.

As for the output variables, agricultural
and economic indicators were compiled
from the Zhejiang Statistical Yearbooks
published by the Zhejiang Bureau of
Statistics (2017-2022). County-level data
was collected to generate provincial totals.

The output variables included crop yield
(tons), representing the combined production
of key grains such as rice, wheat, and maize.
Water consumption (Billion cubic meters,
BM®) captured both agricultural and
domestic water usage. Energy consumption
(million tons of standard coal) encompassed
fossil fuels utilized across various sectors.
Logistics efficiency was assessed using the
freight turnover per 10,000 yuan of GDP
(tons/10,000 yuan) metric. Finally, GDP
(billion yuan) was used to measure
provincial economic growth. Given that rice
is the dominant staple crop in Zhejiang
Province, accounting for over 60% of its
total grain production, the ANN model
primarily evaluates climate impacts on rice
yield (tons) as a key agricultural output
metric. Table 1 provides an overview of the

Table 1. Annual and seasonal climatic, agricultural, energy, and economic indicators as inputs and outputs for the
ANN-based predictive modeling of collaborative development between agriculture and logistics in Zhejiang Province,
China (2017-2022).

Season/Year Average Rainfall ~ Rice Water Energy Logistics GDP
temperature  (mm) Yield  Consumption Consumption Efficiency (Billion

(°C) (Tons) (Billion m’) (Million tons (Tons/10,000 yuan)

standard coal) yuan)

Spring 2017 14.5 210 6535 12.1 2580 7.3 12235
Summer 2017 26.3 290 8752 18.4 3240 8.1 14560
Autumn 2017 18.2 150 7345 15.5 2900 7.5 13565
Winter 2017 6.5 85 4350 9.1 1940 6.9 10560
Spring 2018 12.3 215 6377 11.8 2525 72 11785
Summer 2018 25.1 280 8378 17.7 3110 7.9 14022
Autumn 2018 16.8 140 7235 15.2 2860 7.4 13452
Winter 2018 4.7 80 4100 8.6 1830 6.5 9956
Spring 2019 13.9 220 6415 11.6 2490 7.1 11430
Summer 2019 24.5 285 8356 17.5 3080 7.8 13845
Autumn 2019 17.5 145 7156 15.3 2820 7.3 13265
Winter 2019 52 87 4210 8.9 1870 6.7 10220
Spring 2020 11.2 205 6257 11.4 2450 7.0 11000
Summer 2020 23.1 270 8119 16.9 2960 7.6 13555
Autumn 2020 16.2 135 7056 14.9 2760 72 12990
Winter 2020 4.1 75 4020 8.5 1790 6.4 9770
Spring 2021 12.8 220 6387 11.8 2515 7.3 11780
Summer 2021 253 295 8359 17.7 3110 79 14015
Autumn 2021 17.1 145 7225 15.2 2840 7.4 13430
Winter 2021 5.6 88 4190 8.8 1850 6.7 10270
Spring 2022 13.5 225 6457 11.7 2480 72 11550
Summer 2022 24.8 285 8256 17.5 3060 7.8 13780
Autumn 2022 16.7 140 7106 15.1 2780 7.3 12970
Winter 2022 4.9 77 4060 8.4 1800 6.4 9820
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inputs, including average temperature and
rainfall, which are correlated with the
corresponding outputs for the study period.
The selection of inputs focused on climatic
factors that significantly impact agricultural
activities and energy demands in the
subtropical region, as supported by previous
studies (Li et al., 2018; Tian et al., 2022; Hu
et al. 2022).

ANN Model Development

The development of an effective ANN
model that aligns with the objectives and
characteristics of the specific problem holds
paramount importance. In this particular
study, a feedforward ANN architecture,
namely, the Multilayer Perceptron (MLP),
was employed to explore the relationships
between climatic inputs and agricultural-
economic outputs. The ANN architecture
comprises two layers: an input layer with
two nodes representing average temperature
and rainfall, and an output layer with five
nodes corresponding to crop yield, water
consumption, energy consumption, logistics
efficiency, and economic growth. To ensure
optimal network convergence, a single
hidden layer with five neurons, twice the
number of inputs plus one, was utilized

Input layer

Average Temperature

&V

Hidden layer

(Gue, et al, 2020; Munim and Schramm,
2021). In Figure 1, the schematic of the
generated ANN in this study is depicted,
illustrating its capacity to predict the target
values of the outputs.

The feed forward topology was adopted,
where inputs were passed through weighted
connections to the hidden layer, and the
outputs of the hidden layer were transmitted
to the output layer via additional weighted
links. The activation function employed for
the neurons in both the hidden and output
layers was the sigmoid function, which
nonlinearly transforms inputs to generate
outputs within the [0, 1] range. To assess the
model's performance, a linear regression
analysis was conducted by contrasting the
predicted outputs with the actual outputs.
The coefficient of determination (R*) was
subsequently computed as an indicator of
the prediction accuracy. R* values close to 1
indicate a strong linear relationship between
the predicted and actual outputs, indicating a
well-performing model.

RESULTS AND DISCUSSION
Crop Yield Prediction
This section presents the performance

Output layer

Figure 1. Multilayer perceptron of ANN architecture for predicting agricultural-economic outputs based

on climatic inputs.
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evaluation of ANN model in predicting crop
yield. Figure 2 illustrates the predicted crop
yield values using ANN model. The model
demonstrates a remarkable level of accuracy
in tracking the year-to-year fluctuations in
recorded rice yield over the six-year period.
Analyzing the trends depicted in Figure 2
provides valuable insights. The rice yield
exhibits a consistent upward trajectory from
2017 to 2022, with the average annual
production increasing from approximately
6,700 tons in the initial year to over 7,100
tons in 2022. This upward trajectory
corresponds with the enduring patterns
witnessed in China's agricultural
development over the long term, ascribed to
the progressions in irrigation infrastructure,
mechanization, adoption of hybrid seeds,
and the utilization of fertilizers and
agrochemicals. Nevertheless, discernible
annual fluctuations are evident, which can
be attributed to the variability in climate
conditions across different years, as
elucidated in prior investigations conducted
in China and other subtropical nations (Zhu,
et al., 2021; Shi et al., 2023; Gao, et al.
2023; Wu et al. 2023; Jiang et al. 2023).
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The peaks in the observed crop yield
during the summers of 2017, 2018, and 2019
coincide with higher temperatures, as
summer is the primary growing season for
the major cereals in Zhejiang Province, such
as rice, maize, and wheat (Qi ef al., 2021;
Qu et al 2022). Elevated summer
temperatures accelerate photosynthesis and
plant maturation processes, thus promoting
plant growth and yield if sufficient moisture
is available (Jiang er al. 2018; Zhu et al.
2021; Tian et al. 2022; Wu et al. 2023; Jiang
et al. 2023). This finding reinforces the
positive correlation between temperature
and crop production, as indicated by the
established relationship between input
variables and output predictions in the
training dataset. The decrease in crop yield
observed in summer 2020 can be attributed

to a relatively cooler summer, with
temperatures 1-2°C below the long-term
average (China Meteorological

Administration, 2022).

Significantly, the predictions generated by
ANN correspond with the findings derived
from previous experimental investigations
conducted within the study region. Field
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Figure 2. Predicted crop yields and the influence of average temperature and rainfall in ANN modeling.
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experiments, which focused on rice yields
across eight distinct locations in Zhejiang,
observed a 5-10% increase in yield for every
1°C increase in mean temperature during the
growing season, underscoring the rice crop's
sensitivity to higher temperatures. Similarly,
a comprehensive analysis of long-term
wheat production trends associated with a
1°C temperature rise with a yield increase of
150 kg ha”, owing to a shortened growing
season and an extended period of
photosynthesis (Zhu et al. 2021; Tian et al.
2022; Shi et al. 2023; Hu et al. 2023;
Huang and Shi, 2021).

Water Consumption Prediction

The water consumption trends depicted in
Figure 3 was obtained through the
implementation of ANN in this study and
offers valuable insights. Over the period
from 2017 to 2022, water usage exhibited a
general upward trend, with average annual
consumption increasing from approximately
12 Billion cubic meters (BM?) in the initial
year to over 17 BM® in 2022.
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Corresponding to the model training,
noticeable peaks in water consumption were
observed during the hotter summers of 2017,
2018, and 2019. Elevated temperatures
amplify evapotranspiration rates stemming
from agricultural and domestic practices,
consequently, intensifying water demand.
Moreover, warmer conditions significantly
elevate crop water requirements to sustain
optimal yields. Relatively diminished
rainfall during these years necessitated
augmented  irrigation withdrawals to
compensate for the shortfall in precipitation.
These findings substantiate the influence of
climate patterns on the observed water
consumption patterns during the model
training. Conversely, the decline in water
consumption in 2020 coincides with a
relatively cooler and wetter summer period.

Energy Consumption Prediction

The predicted values for energy
consumption, based on inputs of average
temperature and rainfall, are presented in
Figure 4. Over the period from 2017 to

118

S
S
SRS

555555
5555

2077
Ut

20
15
10

Average Temperature (°C)

Figure 3. Predicted water consumption trends and the influence of climate factors in Zhejiang Province.

503



3200 -

3000 -

2800 -

2600 -

2400

Energy Consumption (million tons standard coal/Year)

10
Average Temperature (°C)

0 300

Wang et al.

43000

50

150

200

250 Rainfall (mm)

Figure 4. Predicted energy consumption trends and the influence of climate factors using ANN modeling.

2022, energy usage followed an increasing
trajectory, with average annual consumption
rising from approximately 2,580 million
tons of standard coal in the initial year to
over 3,060 million tons in 2022.

Peaks in the observed energy consumption
coincided with hotter summers in 2017,
2018, and 2019. Higher temperatures
increased the demand for cooling, leading to
elevated electricity usage. Furthermore,
higher average temperatures during these
years coincided with peak agricultural
activities such as irrigation, requiring
additional fuel for water pumping.
Comparatively lower rainfall necessitated
supplementary  irrigation  withdrawals,
involving additional energy consumption.

Logistics Efficiency Prediction

The predicted values for logistics
efficiency, obtained through the
implementation of ANN, are presented in
Figure 5. From 2017 to 2022, logistics
efficiency generally exhibited an increasing
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trend, with average annual efficiency rising
from approximately 7.3 tons/10,000 yuan in
2017 to 7.8 tons/10,000 yuan in 2022.

Peaks in the observed logistics efficiency
coincided with hotter summers in 2017,
2018, and 2019. Higher temperatures led to
reduced cargo handling times through
accelerated commodity preservation and
processing.  Warmer conditions  also
increased infrastructure utilization,
particularly in activities like transportation
of construction materials. These findings
substantiate the influence of climate o
logistics performance, as demonstrated in
the model training. The decrease in logistics
efficiency observed in 2020 aligns with a

relatively cooler and wetter summer,
resulting in reduced overall demands.
Analyzing logistics efficiency at the

seasonal level offers further insights. Spring
temperatures facilitate construction and
resupply logistics, while summer peaks
indicate the transportation of agricultural
products.  Autumn  demands  signify
movements associated with post-harvest
processing, whereas winter utilization
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centers around primary infrastructure

maintenance.

Economic Growth Prediction

The predicted values for GDP, obtained
through the implementation of using actual
outputs recorded in Table 1, are presented in
Figure 6. Over the study period, GDP
exhibited an overall increasing trajectory,
growing from approximately RMB 12,235
billion in 2017 to RMB 13,780 billion in
2022, reflecting the broader trends of
socioeconomic advancement in China.

The peak period of infrastructure
construction in this timeframe capitalized on
elevated temperatures to expedite the
development process. Moreover, summer
represents a prominent tourist season in
Zhejiang, thereby contributing to the service
sector's influence on the region's GDP.
However, excessively high temperatures can
potentially hamper labor productivity and
result in crop and infrastructure damage if
the implementation of adequate adaptation
measures is lacking. Seasonally, the

increments in spring GDP reflected

17.8
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250 Rainfall (mm)

0 300
Figure 5. Predicted trends in logistics efficiency using ANN and the impact of climate factors including
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increased agricultural outputs with elevated
planting temperatures, while summer peaks
represented combined contributions from
multiple climate-sensitive sectors, including
agriculture, construction, tourism, and
industry.

Performance of ANN Model

The goodness-of-fit was measured using
the coefficient of determination (R?),
ranging from O to 1, where values closer to 1
indicate higher correlation and predictive
strength. Figure 7 illustrates the linear
regression analysis between the predicted
and observed crop yield values from 2017 to
2022, demonstrating an exceptionally high
R® value of 0.9964.

Similarly, Figure 8 presents the linear
regression diagram for water consumption,
yielding an excellent R* value of 0.99585.
This high coefficient signifies the model's
ability to accurately represent water usage
patterns influenced by climatic drivers over
different time periods.

Moving to the energy sector outputs,
Figure 9 shows the linear regression plot for
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Figure 6. Predicted GDP trends using ANN and the influence of climate factors in Zhejiang Province.

energy consumption, with an R* value of
0.99508.

Next, Figure 10 depicts the regression
analysis between predicted and observed
logistics efficiency values. With an R* value
of  0.97883, the optimized ANN
demonstrates reasonable predictions of
logistical performance based on climatic
conditions.

Regression: R=0.9964
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Lastly, Figure 11 portrays the linear
regression evaluation for GDP, with an R’
value of 0.98987. This shows the model's
proficiency in tracking annual GDP trends,
indirectly influenced by temperature and
precipitation that affect sensitive sectors
such as agriculture and construction.

Regression: R=0.99585
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Figure 7. Analysis of the predicted vs. actual crop Figure 8. Linear regression analysis of predicted

yield outputs using linear regression.

vs. actual water consumption.
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Regression: R=0.99508
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Figure 9. Linear regression analysis of energy
consumption predictions.

CONCLUSIONS

This study successfully developed an
optimized feedforward Artificial Neural
Network (ANN) model to examine the
complex connections between climatic factors
and key agricultural-economic outputs in
Zhejiang Province, China. By analyzing
temperature and rainfall inputs, the model
accurately predicted outputs related to crop
yield, water consumption, energy usage,
logistics efficiency, and economic growth on
both annual and seasonal scales. The high
coefficient of determination (R2) values

4 Regression: R=0.98987
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Figure 11. Regression analysis assessing
economic growth forecasting (GDP).

0.6 0.8 1

507

Regression: R=0.97883
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Figure 10. Linear fit between predicted and
observed logistics efficiency outputs.

exceeding 0.97 between predicted and actual
outputs validated the effectiveness of the
trained ANN structure in capturing the
nonlinear relationships in the input-output
datasets. The annual predictions revealed
fluctuations in outputs that corresponded to the
observed climatic anomalies, with peaks in
yield, water consumption, energy usage, and
economic growth during warmer summers and
declines during cooler conditions. Seasonal
predictions further highlighted variations in
climatic drivers across different growing
cycles. The analysis of individual output
predictions identified valuable linkages
between climate and specific activities, such as
progressive agricultural practices, the need for
sustainable water management, the urgency of
transitioning to clean energy sources, and

opportunities for seasonal infrastructure
optimization. These findings emphasized the
importance ~ of  considering  temporal
granularity in understanding the

interdependencies among different sectors and
provided valuable insights to inform evidence-
based strategies for rural development.
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