Temperature-Depending Development and Temperature Thresholds of Mediterranean fruit fly Ceratitis capitata Wiedeman (Diptera: Tephritidae) in Iran

Document Type : Original Research

Author
Agricultural Research, Education and Extension Organization (AREEO), Iranian Research Institute of Plant Protection, Tehran, Iran, 1985713133 Iran
Abstract
Mediterranean fruit fly, Ceratitis capitata Wiedeman (Diptera: Tephritidae), is one of the most important pests of horticultural crops in tropical and subtropical regions of the world. In this study, the developmental rate of Mediterranean fruit flies was studied at 10, 12, 15, 17, 20, 25, 27, 30, 32, and 35°C. The results showed a nonlinear relationship between temperatures and developmental rate. The best nonlinear models were Perfomance-1 and Performance-2 in the Mazandaran and Fars provinces, respectively. These models simulated the developmental rate of Mediterranean fruit flies accurately at temperatures ranging from 15 to 35 and 20 to 30°C, in Mazandaran and Fars provinces, respectively and the estimated optimal temperature of total immature stages was 31.94 and 31.8°C, respectively. The lower and upper temperature threshold the total immature stage in Mazandaran and Fars provinces were estimated at 11.23 and 13.15 °C, and 38.1 and 37.74 °C, respectively. The two linear models, the Ikemoto linear model showed better-fit data compared with the ordinary model.

Keywords


Arbab, A., Kontodimas, D. C. and Sahragard, A. 2006. Estimating development of Aphis pomi (DeGeer) (Homoptera: Aphididae) using linear and non-linear models. Environ. Entomol., 5: 1208-1215.
Azrag, A. G., Pirk, C. W., Yusuf, A. A., Pinard, F., Niassy, S. and Mosomtai, G. 2018. Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin). PloS one. 13: e0199569. https://doi.org/10.1371/journal.pone.0199569 PMID: 29933391.
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M. and Brown, V. K. 2002. Herbivore in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol., 8: 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x.
Brévault, T. and Quilici, S. 2000. Relationships between temperature, development and survival of different life stages of the tomato fruit fly, Neoceratitis cyanescens. Entomologia Experimentalis et Applicata., 94: 25-30. doi: 10.1046/j.1570-7458.2000.00600.x.
Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. and Mackauer, M. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol., 11: 431-438. https://doi.org/10.2307/2402197.
Curry, G. L., Feldman, R. M. and Sharp, P. J. H. 1978. Foundation on stochastic development. J. Theor. Biol., 74: 397- 410.
Duyck, P. F. and Quilici, S. 2002. Survival and development of different life stages of three Ceratitis spp. (Diptera: Tephritidae) reared at five constant temperatures. Bull. Entomol. Res., 92: 461-469. doi: 10.1079/BER2002188.
Duyck. P. F., Quilici, S. and Glenac, S. 2002. Comparative study of the developmental biology of three species of fruit flies (Ceratitis spp.) (Diptera: Tephritidae), pests of fruit crops on Re:union: Island, Proceedings of 6th International Fruit Fly Species of fruit Fly Symposium 6-10 May, Stellenbosch, South Africa. PP. 67-69.
Fletcher, B. S. 1989. Temperature - development rate relationships of the immature stages and adults of Tephritid fruit flies. In: Robinson AS, Hooper G (Eds) Fruit flies their biology, natural enemies and control, Vol. 3A. Elsevier, Amsterdam.
Golizadeh, A., Kamali, K., Fathipour, Y. and Abbasipour, H. 2007. Temperature dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. J. Insect Sci., 14: 309-316.
Honék, A. and Kocourek, F. 1990. Temperature and development time in insects: a general relationship between thermal constants. Zool. Jahrb. Abt. Syst., 117: 401-439.
Honek, A. 1996. Geographical variation in thermal requirements for insect development. Eur. J. Entomol., 93: 303- 312.
Howell, J. F. and Neven, L. G. 2000. Physiological development time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol., 29: 766-772.
Ikemoto, T. and Kiritani, K. 2019. Novel Method of Specifying Low and High Threshold Temperatures Using Thermodynamic SSI Model of Insect Development. Environ. Entomol., 48(3): 479-488.
Kocourek, F. and Stara, J. 2005. Predictive value of a model of the flight activity of Adixophyes orana (Lep.: Tortricidae). J. Pest Sci. 78: 205-211.
Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J. and Economou, L. P. 2004. Comparative temperature- dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol., 33: 1-11.
Lee, J. H. and Elliott, N. C. 1998.Comparison of developmental responses to temperature in Aphelinus asychis (Walker) from two different geographic regions. Southwest. Entomol. 23: 77-82.
Liu, X. and Ye, H. 2009. Effect of temperature on development and survival of Bactrocera correcta (Diptera: Tephritidae). Sci. Res. Essays., 4(5): 467-472.
Morales. P., Cermeli, M., Godoy, F. and Salas, B. 2004. Lista de hospederos de la mosca del Mediterráneo Ceratitis capitata Wiedemann (Diptera: Tephritidae) basada en los registros del Museo de Insectos de Interés Agrícola del INIA - CENIAP. Entomotropica. 19 (1): 51-54.
Mujica, N., Sporleder, M., Carhuapoma, P. and Kroschel, J. 2017. A temperature -dependent phenology model for Liriomyza huidobrensis (Diptera: agromyzidae). J. Econ. Entomol., 110 (3): 1333-1344.
Rebaudo, F. and Rabhi, V. B. 2018. Modeling temperature-dependent development rate and phenology in insect review of major developments, challenges, and future directions. The Netherland Entomology Society Entomologia Experimentalis et Applicata. 166: 607-617.
Ricalde, M. P., Nava, D. E., Loeck, A. E. and Donatii, M. G. 2012. Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. J. Insect Sci., 12(33): 1-10.
Rwomushana, I., Ekesi, S., Ogol, C. K. P. O. and Gordon, I. 2008. Effect of temperature on development and survival of immature stages of Bactrocera invadens (Diptera: Tephritidae). J. Appl. Entomol., 132: 832-839. doi: 10.1111/j.1439-0418.2008.01318.x.
Salum, J. K., Mwatawala, M. W., Kusolwa, P. M. and De Meyer, M. 2013. Demographic parameters of the two main fruit fly (Diptera: Tephritidae) species attacking mango in central Tanzania. J. Appl. Entomol., 138: 141-148.
Thomas, M. C., Heppner, J. B., Woodruff, R. E., Weems, H. V., Steck, G. J. and Fasulo, T. R. 2001. Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae). http://edis.ifas.uß.edu/topic_a22355341.
Grout, T. G. and Stoltz, C. S. 2007. Developmental Rates at Constant Temperatures of Three Economically Important Ceratitis spp. (Diptera: Tephritidae) From Southern Africa. Environ. Entomol., 36(6): 1310-1317.
Trudgill, D. L., Honék, A., Li, D. and Straalen, N. M. 2005. Thermal time: concepts and utility. Ann. Appl. Biol., 146: 1-14. doi: 10.1111/j.1744-7348.2005.04088.x.
Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. and Kanehisa, D. T. 1996. Survival and development of immature stages of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Ann. Entomol. Soc. Am., 89: 64-69. doi: 10.1093/aesa/89.1.64.
Vargas, R. I., Walsh, W. A., Kanehisa, D. J., Stark, D. and Nishida, T. 2000. Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperature. Ann. Entomol. Soc. Am., 93: 75-81. doi: 10.1603/0013-8746(2000)093[0075:CD OTHF]2.0.CO;2.
Vargas, R. I., Walsh, W. A., Kanehisa, D. T., Jang, E. B. and Armstrong, J. W. 1997. Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Ann. Entomol. Soc. Am., 90: 162-168. doi: 10.1093/aesa/90.2.162.
Vayssières, J. F., Carel, Y., Coubes, M. and Duyck, P. F. 2008. Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Ré:union: Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environ. Entomol., 73(2): 307-314. doi: 10.1093/ee/37.2.307.
White, I. M. and Elson-Harris, M. M. 1992. Fruit flies of economic significance: their identification and bionomics. 601 PP. Wallingford, CAB International.
Yadav, R. and Chang, N. T. 2014. Effects of temperature on the development and population growth of the melon thrips, Thrips palmi, on eggplant, Solanum melongena. J. Insect Sci., 14:78. https://doi.org/10. 1093/jis/14.1.78 PMID: 25373225.
Ye, H. 2001. Distribution of the oriental fruit fly (Diptera: Tephritidae) in Yunnan Province. Ent. Sinica., 8: 175-182.
Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S. and Zalucki, M. P. 2010. Modeling demographic response to constant temperature in Hypera postica (Coleoptera: Curculionidae). J. Econ. Entomol., 103(2): 292-301.

Articles in Press, Accepted Manuscript
Available Online from 01 January 2024