1. Arbab, A., Kontodimas, D. C. and Sahragard, A. 2006. Estimating Development of Aphis pomi (DeGeer) (Homoptera: Aphididae) Using Linear and Non-linear Models. Environ. Entomol., 5: 1208-1215.
2. Arbabtafti, R., Fathipour, Y. and Ranjbar-Aghdam, H. 2023. Thermal Requirements and Development Response to Constant Temperatures by Sesamia cretica (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci., 43(2): 561-579.
3. Akaike, H. 1974. A New Look at the Statistical Model Identification. IEEE Trans Autom Control., 19:716-723.
4. Azrag, A. G., Pirk, C. W., Yusuf, A. A., Pinard, F., Niassy, S. and Mosomtai, G. 2018. Prediction of Insect Pest Distribution as Influenced by Elevation: Combining Field Observations and Temperature-Dependent Development Models for the Coffee Stink Bug, Antestiopsis thunbergii (Gmelin). PloS One, 13: 1-18.
5. Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M. and Brown, V. K. 2002. Herbivore in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Glob. Change Biol., 8: 1-16.
6. Brévault, T. and Quilici, S. 2000. Relationships between Temperature, Development and Survival of Different Life Stages of the Tomato Fruit fly, Neoceratitis cyanescens. Entomol. Exp. Appl., 94: 25-30.
7. Briere J. F., Pracros, P., Le Roux, A. Y. and Pierre, S. 1999. A Novel Rate Model of Temperature Dependent Development for Arthropods. Environ. Entomol., 28:22–29
8. Burnham, K. P., Anderson, D. R. and Huyvaert, K. P. 2011. AIC Model Selection and Multimodel IInference in Behavioral Ecology: Some |Background, Observations, and Comparisons. Behav Ecol Sociobiol., 65:23-35.
9. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P. and Mackauer, M. 1974. Temperature Requirements of Some Aphids and Their Parasites. J. Appl. Ecol., 11: 431-438.
10. Chandrakumara, K., Sau, A. K., Ankur; R., Tanwar, A. K. and Hadimani, B. N. 2024. Variations in the Biological and Ecological Attributes of Insects due to Climate Change: A Review. Indian J. Entomol., 86(1): 319.
11. Curry, G. L., Feldman, R. M. and Sharp, P. J. H. 1978. Foundation on Stochastic Development. J. Theor. Biol., 74: 397- 410.
12. Duyck, P. F. and Quilici, S. 2002. Survival and Development of Different Life Stages of Three Ceratitis spp. (Diptera: Tephritidae) Reared at Five Constant Temperatures. Bull. Entomol. Res., 92: 461-469.
13. Duyck. P. F., Quilici, S. and Glenac, S. 2002. Comparative Study of the Developmental Biology of Three Species of Fruit Flies (Ceratitis spp.) (Diptera: Tephritidae), Pests of Fruit Crops on Reunion Island. Proceedings of 6th International Fruit Fly Species of fruit Fly Symposium, 6-10 May, Stellenbosch, South Africa, PP. 67-69.
14. Duyck, P. F., Patrice David, P. and Quilici, S. 2004. A Review of Relationships between Interspecific Competition and Invasions in Fruit Flies (Diptera: Tephritidae). Ecol. Entomol., 29 (5): 511-520.
15. Fletcher, B. S. 1989. Temperature - Development Rate Relationships of the Immature Stages and Adults of Tephritid Fruit Flies. In: “Fruit Flies Their Biology, Natural Enemies and Control”, (Eds.): Robinson, A. S. and Hooper, G. Vol. 3A, Elsevier, Amsterdam.
16. Golizadeh, A., Kamali, K., Fathipour, Y. and Abbasipour, H. 2007. Temperature Dependent Development of Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. J. Insect Sci., 14: 309-316.
17. Grout, T. G. and Stoltz, C. S. 2007. Developmental Rates at Constant Temperatures of Three Economically Important Ceratitis spp. (Diptera: Tephritidae) From Southern Africa. Environ. Entomol., 36(6): 1310-1317.
18. Honék, A. and Kocourek, F. 1990. Temperature and Development Time in Insects: A General Relationship between Thermal Constants. Zool. Jahrb. Abt. Syst., 117: 401-439.
19. Honek, A. 1999. Constraints on Thermal Requirements for Insect Development. Entomol. Sci., 2:615-621.
20. Howell, J. F. and Neven, L. G. 2000. Physiological Development Time and Zero Development Temperature of the Codling Moth (Lepidoptera: Tortricidae). Environ. Entomol., 29: 766-772.
21. Ikemoto, T. and Kiritani, K. 2019. Novel Method of Specifying Low and High Threshold Temperatures Using Thermodynamic SSI Model of Insect Development. Environ. Entomol., 48(3): 479-488.
22. Ikemoto, T. and Takai, K. 2000. A New Linearized Formula for the Law of Total Effective Temperature and the Evaluation of Line-Fitting Methods with Both Variables Subject to Error. Environ. Entomol., 29: 671–682.
23. Jarosik, V., Honek, A. and Dixon, A. F. G. 2003. Development Rate Isomorphy in Insects and Mites. Am. Nat., 4:497-510.
24. Kambrekar, D. N., Guledgudda, S. S., Katti, A. and Kumar, M. 2015. Impact of Climate Change on Insect Pests and Their Natural Enemies. Karnataka J. Agric. Sci. Spl. Issue, 28(5): 814-816.
25. Kocourek, F. and Stara, J. 2005. Predictive Value of a Model of the Flight Activity of Adixophyes orana (Lep.: Tortricidae). J. Pest Sci., 78: 205-211.
26. Kontodimas, D. C., Eliopoulos, P. A., Stathas, G. J. and Economou, L. P. 2004. Comparative Temperature-Dependent Development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) Preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): Evaluation of a Linear and Various Nonlinear Models Using Specific Criteria. Environ. Entomol., 33: 1-11.
27. Lee, J. H. and Elliott, N. C. 1998. Comparison of Developmental Responses to Temperature in Aphelinus asychis (Walker) from Two Different Geographic Regions. Southw. Entomol., 23(1): 77-82.
28. Li, Z. H., Jiang, F., Ma, X., Fang, Y., Sun, Z., Qin, Y. and Wang, Q. 2013. Review on Prevention and Control Techniques of Tephritidae Invasion. Plant Quarantine, 27(2): 1–10.
29. Liu, X. and Ye, H. 2009. Effect of Temperature on Development and Survival of Bactrocera correcta (Diptera: Tephritidae). Sci. Res. Essays, 4(5): 467-472.
30. Mafi Pashaklaei, Sh. A. 2013. Study on rearing Mediterranean fruit fly Ceratitis capitata Wied. on artificial diets under laboratory conditions (Final research project report). Agricultural Research, Education and Extension Organization, Iranian Research Institute of plant protection, 52 pp.
31. Mirhosseini, M. A., Fathipour, Y. and Reddy, G. V. P. 2017. Arthropod Development’s Response to Temperature: A Review and New Software for Modeling. Ann. Entomol. Soc. Am., 110: 507-520
32. Morales. P., Cermeli, M., Godoy, F. and Salas, B. 2007. Lista de Hospederos de la Mosca del Mediterráneo Ceratitis capitata Wiedemann (Diptera: Tephritidae) Basada en los Registros del Museo de Insectos de Interés Agrícola del INIA - CENIAP. Entomotropica, 19(1): 51-54.
33. Mujica, N., Sporleder, M., Carhuapoma, P. and Kroschel, J. 2017. A Temperature-Dependent Phenology Model for Liriomyza huidobrensis (Diptera: Agromyzidae). J. Econ. Entomol., 110 (3): 1333-1344.
34. Papadogiorgou, G. D., Papadopoulos, A. G., Moraiti, C. A., Verykouki, E. and Papadopoulos, N. T. 2024. Latitudinal Variation in Survival and Immature Development of Ceratitis capitata Populations Reared in Two Key Overwintering Hosts. Sci. Rep., 14: 467.
35. Rebaudo, F. and Rabhi, V. B. 2018. Modeling Temperature-Dependent Development Rate and Phenology in Insect Review of Major Developments, Challenges, and Future Directions. Entomol. Exp. Appl., 166: 607-617.
36. Ricalde, M. P., Nava, D. E., Loeck, A. E. and Donatii, M. G. 2012. Temperature-Dependent Development and Survival of Brazilian Populations of the Mediterranean Fruit fly, Ceratitis capitata, from Tropical, Subtropical and Temperate Regions. J. Insect Sci., 12(33): 1-10.
37. Rwomushana, I., Ekesi, S., Ogol, C. K. P. O. and Gordon, I. 2008. Effect of Temperature on Development and Survival of Immature Stages of Bactrocera invadens (Diptera: Tephritidae). J. Appl. Entomol., 132: 832-839.
38. Salum, J. K., Mwatawala, M. W., Kusolwa, P. M. and De Meyer, M. 2013. Demographic Parameters of the Two Main Fruit Fly (Diptera: Tephritidae) Species Attacking Mango in Central Tanzania. J. Appl. Entomol., 138: 141-148.
39. Thomas, M. C., Heppner, J. B., Woodruff, R. E., Weems, H. V., Steck, G. J. and Fasulo, T. R. 2001. Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Insecta: Diptera: Tephritidae). UF/IFAS Extension, https://edis.ifas.ufl.edu/publication/IN371.
40. Trudgill, D. L., Honek, A., Li, D. and Van Straalen, N. M. 2005. Thermal time-concepts and utility. Ann. Appl. Biol., 146:1-14
41. Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. and Kanehisa, D. T. 1996. Survival and Development of Immature Stages of Four Hawaiian Fruit Flies (Diptera: Tephritidae) Reared at Five Constant Temperatures. Ann. Entomol. Soc. Am., 89: 64-69.
42. Vargas, R. I., Walsh, W. A., Kanehisa, D. J., Stark, D. and Nishida, T. 2000. Comparative Demography of Three Hawaiian Fruit Flies (Diptera: Tephritidae) at Alternating Temperature. Ann. Entomol. Soc. Am., 93: 75-81.
43. Vargas, R. I., Walsh, W. A., Kanehisa, D. T., Jang, E. B. and Armstrong, J. W. 1997. Demography of four Hawaiian Fruit Flies (Diptera: Tephritidae) Reared at Five Constant Temperatures. Ann. Entomol. Soc. Am., 90: 162-168.
44. Vayssières, J. F., Carel, Y., Coubes, M. and Duyck, P. F. 2008. Development of Immature Stages and Comparative Demography of Two Cucurbit-Attacking Fruit Flies in Réunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environ. Entomol., 73(2): 307-314.
45. White, I. M. and Elson-Harris, M. M. 1992. Fruit Flies of Economic Significance: Their Identification and Bionomics. CAB International, Wallingford, 601 PP.
46. Yadav, R. and Chang, N. T. 2014. Effects of Temperature on the Development and Population Growth of the Melon Thrips, Thrips palmi, on Eggplant, Solanum melongena. J. Insect Sci., 14: 78.
47. Yamamura, K. and Kiritani, K. 1998. A Simple Method to Estimate the Potential Increase in the Number of Generations under Global Warming in Temperate Zones. Appl. Entomol. Zool., 33: 289-298.
48. Ye, H. 2001. Distribution of the Oriental Fruit Fly (Diptera: Tephritidae) in Yunnan Province. Entomol. Sin., 8(2): 175-182.