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Temperature-Dependent Development and Temperature Thresholds of total
Immature stage of Mediterranean fruit fly, Ceratitis capitata (Wiedemann,
1824) (Diptera: Tephritidae) in Iran

Najmeh Ebrahimi*

Abstract

Mediterranean fruit fly, Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae), is one of the
most important pests of agricultural crops in tropical and subtropical regions of the world. In this
study, the developmental rate of C. ceratitis was studied at 10, 12, 15, 17, 20, 25, 27, 30, 32, and
35°C. The results showed a nonlinear relationship between temperatures and developmental rate.
The best nonlinear models were Perfomance-1 and Performance-2 in the Mazandaran and Fars
provinces, respectively. These models simulated the developmental rate of Mediterranean fruit fly
accurately at temperatures ranging from 15 to 35 and 20 to 30°C, in the Mazandaran and Fars
provinces, respectively and the estimated optimal temperature of total immature stages was 31.94
and 31.8°C, respectively. The lower and upper temperature thresholds the total immature stage in
Mazandaran and Fars provinces were estimated at 11.23 and 13.15 °C, and 38.1 and 37.74 °C,
respectively. Between two linear models, the Ikemoto linear model, showed better-fit data
compared with the ordinary model.

Keywords: Ceratitis capitata, Nonlinear models, Linear models, Developmental rate, Fars,
Mazandaran.

Introduction:

Fruit flies belong to the family Tephritidae, one of the largest and most economically important
groups in the order Diptera (White and Elson-Harris, 1992; Li et al., 2013). The larvae of most
Tephritid species develop in the seed and cause severe damage to fruit and vegetable crops in most
tropical and subtropical countries. The Mediterranean fruit fly is one of the most damaging
agricultural pest in the world. It is a severe pest of more than 350 species of fruits and vegetables
(Thomas et al., 2001; Morales et al., 2007; White and Elson-Harris, 1992). In the last decade, the

consequences of climate change on the distribution, abundance, and phenology of insect species
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have been widely studied. With an estimated further increase in mean global temperatures of 0.8°C
over the next 100 years, the biosphere can be expected to experience broad climate-related changes.
The occurrence of insect pests could be impacted by these changes. Insects may respond to climate
change in a variety of ways (Chandrakumara et al., 2023; Kambrekar et al., 2015; Yamamura and
Kiritani, 1998). Various factors, particular among them, temperature, is a critical abiotic factor
affecting the development, survival, and reproduction of insect species, fitness, or performance-
related traits of insects (Azrag et al., 2018; Yadav et al., 2014). Insect distribution and abundance
are highly affected by temperature and generally, an increase in temperature within the limits
tolerated by the insect results in a rapid population increase (Campbell et al., 1974; Bale et al.,
2002; Mujica et al., 2017).

The developmental rate of insects and other poikilothermic invertebrates is linearly dependent on
temperature from a lower developmental threshold (Tmin) to the optimum temperature (Topt). This
is because temperature affects many physiological processes and the activity of enzymes (Trudgill
et al., 2005). Phenological models, using physiological time data, have been developed for
Mediterranean fruit fly to predict the emergence of adults from the overwintering generation, egg
hatching, larval, and pupal development, as well as generation time. These models, all based on a
linear relationship between temperature and developmental rate, have been used to time pesticide
application for Mediterranean fruit fly (Duyck et al., 2002; Grout and Stoltz, 2007; Duyck and
Quilici, 2002). Linear approximation enables the estimation of lower temperature thresholds and
thermal constants within a limited temperature range (Campbell et al., 1974; Hone "k 1999; Howell
and Neven, 2000; Jaros “ik et al., 2002).The curvilinear models have not been routinely used of
their complexity (Howell and Neven, 2000). Temperature is the single most important
environmental factor determining development and survival of Tephritid fruit flies (Fletcher,
1989). Temperature effects on the development and stage-specific survival have been shown to
influence both the quantity and quality of Tephritid fruit flies produced (Vargas et al., 1996; Vargas
et al., 1997; Brévault and Quilici, 2000; Vargas et al., 2000; Duyck and Quilici, 2002; Trudgill et
al., 2005; Grout and Stoltz, 2007; Rwomushana et al., 2008; Vayssiéres et al., 2008; Liu and Ye,
2009; Salum et al., 2013). Various Tephritid species have specific optimal temperature ranges for
development that are limited by lower and upper thresholds. Development does not occur below
and above these temperature limits and this can vary both with developmental stage and
geographical origin (Honék and Kocourek, 1990). Information on the thermal requirements of
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insect groups forms an essential basis for understanding and predicting the geographical
distribution of the different insect groups. This is the first study in which two linear and 26
nonlinear models have been used to model the effect of temperature on the development of this
important fruit fly. The results will contribute to improve integrated pest management (IPM)

programs.

Materials and Methods

Rearing methods

To establish and maintain the insect colony and conduct experiment, fruits infected with
Mediterranean fruit fly were collected from citrus orchards in Mazandaran and Fars provinces.
Infected citrus fruits were transferred to the growth chamber (in plastic boxes on sterilized sand )
and phytotron (rearing of colony) at a temperature of 25 + 1°C and 60 + 10% RH and 16: 8 (L:D).
Larvae and adults were reared for two generations on artificial food (bran, yeast, water, sugar,
sodium benzoate and citric acid) and hydrolyzed protein in Petri dishes and large cylindrical
containers (Mafi Pashaklai, 2013).

Experimental conditions

Rearing was conducted at (10, 12, 15, 17, 20, 25, 27, 30, 32, and 35 = 1°C), 60 + 5% RH, and a
photoperiod of 16:8 (L:D) h in growth chambers. The environmental conditions of each phytotron
were monitored with a temperature and relative humidity data logger.

Egg, Larval and Pupal development

Three hundred to 1000 eggs in groups of 100, less than one day old, on filter paper were incubated
at 10, 12, 15, 17, 20, 25, 27, 30, 32, and 35 + 1°C. All eggs were checked daily for hatching. The
daily growth and development on artificial food and sterilized sand for larvae and pupae was

monitored and recorded until the emergence of adult flies.

Developmental rate and mathematical models

Developmental rate is the reciprocal of developmental time in days. These rates are used in linear
and nonlinear models where data are added daily (Arbab et al., 2006). Development is completed
when the sum of daily developmental rate values equals 1 (Curry et al., 1978). Therefore, the
integral of the developmental rate function over time can be used to simulate the development of

an organism exposed to different temperatures (Arbab et al., 2006). The ordinary and Ikemoto
3
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linear and 26 nonlinear descriptive models were used to determine the relationship between
temperature and Mediterranean fruit fly developmental rate. The parameters of interest are the
lower and upper temperature thresholds (Tmin and Tmax, respectively), the optimal temperature (Topt),
and the thermal constant (K). Most models can estimate two or more parameters. In addition to the
ordinary model, the Ikemoto linear model was used to obtain more reliable estimates of the lower
temperature threshold and thermal constant (Ikemoto and Takai, 2000).

Three criteria including the sum of squared error (SSE), adjusted coefficient of determination
(R%agj), and Akaike information criterion (AIC) were used to evaluate the nonlinear models. All
nonlinear models in each stage were ranked using AIC, as the best statistical criterion (Akaike
1974), and the model with the smallest value of AIC was considered to be the best model for
describing the temperature-dependent development of C. capitata According to Burnham et al.
(2011), models with A > 7 were dismissed where A is the difference between AIC of the best model
and the i™ model. Trast, the temperature that the maximum development rate occur was calculated
directly from some of the nonlinear models (Arbabtafti et al. 2023). In addition to statistical criteria
accuracy (Kontodimas et al. 2004), biological significance (Briere et al. 1999) were considered to
select the best nonlinear model. The observed total development time of C. capitata in Mazandaran

and Fars provinces was compared with those estimated using the selected nonlinear models.

Statistical Analysis of Developmental Rate

To determine the effect of different temperatures on the developmental time of the Mediterranean
fruit fly, data were checked for normality. Then, one-way analysis of variance (ANOVA), was used
to determine the significant differences in developmental time of total immature stages (from egg
to pupal stage) at constant temperatures (Minitab, 2000). The differences among the treatments
were compared using Tukey's test (o = 0.05). Comparison of development time of two provinces
was done by the Student’s t-test. Minitab (ver. 19.2) software was used for all analyses. Excel 2016
was used for graph construction. Evaluation of two linear and 26 nonlinear models was done by
using Arthro Thermo Model (ATM) software (Mirhosseini et al. 2017) to describe the development
rate (the reciprocal of development time) of C. capitata as a function of temperature. The ATM

software calculates criteria and parameters for all models.
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Results

Developmental Time

No development occurred at 10 and 12°C (in Fars province) and 10, 12, 15 and 17°C (in
Mazandaran province). The mean developmental time of total immature stages (from egg to pupal
stage) at ten constant temperatures in two provinces, is shown in Table 1. One-way ANOVA
showed a significant effect of temperature on development time for total immature stages of
Mediterranean fruit fly in Mazandaran and Fars provinces (P< 0.05). Total developmental time
was extended at 15°C (52.50 d) and 20°C (26.01 d) in population of Mazandaran and Fars

provinces, respectively.
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157 Table 1. Developmental time of Ceratitis capitata total immature stages at ten constant
158  temperatures.

Geographical population Temperature (°C) Total (day)
Mean = SE
Mazandaran 10 -
12 -
52.50+0.5
15 N=2
38.2+0.87 PA
o N=20
20.11+0.28 B
20 N=70
15.09£0.22 A
25 N=94
13.30+0.12 A
21 N=121
11.24+0.2] detA
30 N=66
32 -
13+0.579%A
35 N=3
F 632.27
df 6,369
P 0.000
Fars 10 -
12 -
15 -
17 -
26.01+0.17 @A
20 N=121
14.52+0.16 °A
25 N=129
13.39+0.10 A
2! N=133
11.22+0.14 9
30 N=68
32 -
35 -
F 1832.81
df 3,447
P 0.000

159 Means followed by different lowercase letters in the columns are significantly different between different temperatures
160 in each population (Tukey's test, P < 0.05) and the means followed with by capital letters were significantly different
161 between two populations at each temperature (T-test, P < 0.05).

162
163  Model Evaluation

164  Linear models
165  Both linear models showed an acceptable fitness for total immature stages. The linear regression
166  equation, the lower temperature threshold, and the thermal constant of the total immature stages of

6
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167  C. capitata are shown in Table 2. The Ikemoto linear model had a higher value of R? and R?,g; than
168  the ordinary model, indicating a slight degree of confidence in parameter estimates provided by the
169  Ikemoto linear model. In addition to the ordinary model, the Ikemoto and Takai linear models were
170  used to obtain more reliable estimates of the lower temperature threshold and thermal constant
171 (Ikemoto and Takai 2000). The Ikemoto linear model estimated lower temperature thresholds for
172 total developmental of C. capitata was 10.80 and 12.69 °C, in Mazandaran and Fars provinces,
173 respectively. The thermal constant of total immature stages were 228.86 and 188.59 degree days
174  (DD) in Mazandaran and Fars province, respectively.

175
176  Table 2: Linear regressions, lower temperature threshold (Tmin), and thermal constant (degree days)
177  of Ceratitis capitata immature stages using two linear models.

Geographica . . Tmin K ) 5
| population Model Stage Linear equation °C) (DD) R RZad P
Mazandaran Ordinary  Egg-pupa R=0.024385+0.0033905T 7.1921 294.9416 0.84082 0.80898 0.003
Ikemoto  Egg-pupa DT=228.8627+10.8028D  10.8028 228.8627 0.94398 0.93278 0.00007
Fars Ordinary  Egg-pupa R=0.060777+0.0050415T 12.0553 168.3525 0.98692 0.98039 0.006

Ikemoto  Egg-pupa  DT=188.5943+12.695D  12.695 188.5943 0.99341 0.99011 0.0002

178
179  Nonlinear Models

180  The curve of the influence of temperature on the developmental rate of total immature stages (from
181  egg to pupae stage) fitted by 18 models in the Mazandaran province (Figure 1) and five models in
182  the Fars province is shown in Figure 2. The values of R?, RSS (SSE), AIC (Akaike information
183  criterion), and R%gj used to determine the goodness-of-fit, the models of the nonlinear models of
184  the Mazandaran province are shown in Table 3. Considering the AIC and biological criteria (To,
185  Tu, and Topt) the Logan 6 model had the poorest and the Briere-1 model had the best fitness to data
186  for total immature development in the Mazandaran province (Table 5). The values of measurable
187  parameters of the nonlinear developmental rate models in Fars province are presented in Table 4.
188  Among the non-linear models obtained from the Fars province, only the polynomial model was
189  accepted for total immature development based on AIC, however biological criteria (To, Tu, and
190  Topt), it had the poorest ability to provide the growth and development model. Performance-2, and
191  Briere-1 models have provided more accurate estimates for To, Tu, and Topt in the Fars province
192  (Table 6).

193

194
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Figure 1. Observed development rate for total immature stages of Mazandaran province of Ceratitis
capitata (dots) and 18 fitted nonlinear models (Lines).
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Figure 2. Observed development rate for total immature stages of Fars province of Ceratitis
capitata (dots) and 5 fitted nonlinear models (Lines).
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200 Table 3. Comparison of 26 developmental rate models based on the no. of parameters, SSE, Akaike
201 information criterion (AIC), and adjusted R? (R%g) for predicting egg, larva, pupa and total
202  immature development stages of Ceratitis capitata in Mazandaran province

Model No. of parameters Total

SSE R%adi AIC Rank!
Pradhan-Taylor 3 8.000005 0.9698 -73.1459 6
Davidsons logistic 3 0.0043 -0.4999 -45.8029 24
Logan-6 4 1.00004 0.9454 -69.0103 18
Hilbert and Logan 5 9.3209e-05 0.9346 -68.5861 19
Lactin-1 3 1.00004 0.9408 -68.4299 20
Lactin-2 4 5.000005 0.9752 -74.5425 3
Logan-10 5 9.000005 0.9552 -68.3887 21
Analytis-1 5 6.000005 0.9538 -71.0189 12
Analytis-2 5 8.000005 0.9414 -69.3496 17
Analytis-1/Allahyari 5 7.000005 0.9498 -70.431 15
Analytis-3 5 6.000005 0.9530 -70.8958 14
Briere-1 3 6.000005 0.9785 -75.5218 1
Briere-2 4 6.000005 0.9716 -73.5736 5
Analytis-3/Kontodimas 3 7.000005 0.9746 -74.3637 4
Janisch/Kontodimas 4 8.000005 0.9610 -71.3618 11
Janisch/Rochat 4 1.00004 0.9509 -69.747 16
Sharpe and DeMichele 7 0.0274 NaN?  -26.8023 26
Sharp and 7 0.0039 NaN -40.4897 25
DeMichele/Schoolfield
Sharp and 6 0.0013  -0.7976 -48.2395 23
DeMichele/Kontodimas
Polynomial (cubic) 4 7.000005 0.9662 -72.3688 9
Sharpe—-Schoolfield-lkemoto 7 3. 000005 NaN -71.4554 10
(SSI model)
Performance-1 5 4.000005 0.9653 -73.0182 7
Performance-2 4 5.000005 0.9766 -74.9404 2
Wang 6 4.000005 0.9303 -70.9876 13
Ratkowsky 4 3.00004 09705 -61.6343 22
Beta’ 4 7.000005 0.9669 -72.5221 8

203 1 Rank is based on the AIC criteria.
204 2 NAN The number of model parameters is equal to or greater than the observations and cannot be calculated Model
205 - Data could not be fitted by the model.
206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222
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223  Table 4. Comparison of 26 developmental rate models based on the no. of parameters, SSE, Akaike
224 information criterion (AIC), and adjusted R? (R%j) for predicting total immature development of

225  Ceratitis capitata in Fars province.
Model No. of parameters Total
SSE Radj AIC Rank!
000001 09763  -453017 3
00014  -1.9999  -25.9319 13

Pradhan-Taylor
Davidsons logistic

Logan-6 0.00001 NaN? -41.6177 10
Hilbert and Logan - - - -
Lactin-1 0.00001 0.9647 -43.7057 5
Lactin-2 0.00001 NaN -43.3518 8
Logan-10 - - - -
Analytis-1 - - - -
Analytis-2 - - - -
Analytis-1/Allahyari - - - -
Analytis-3 - - -

Briere-1 0.000009 0.9791 -45.7944
Briere-2 0.00001 NaN -43.5121

0.00001 0.9749 -45.0691

2

7

Analytis-3/Kontodimas 4
0.0015 NaN -23.6038 14
11

Janisch/Kontodimas

Janisch/Rochat

Sharpe and DeMichele

Sharp and DeMichele/Schoolfield

Sharp and DeMichele/Kontodimas
Polynomial (cubic)
Sharpe-Schoolfield—Ikemoto (SSI model)
Performance-1

Performance-2

0.00001 NaN -40.8527

0.0000 NaN -227.7655 1

0.00001 NaN -43.5767 6

ArhoOoOboNPPONNDRDdDOPOLDOOOCIOONTODRWODMWW

Wang - - -
Ratkowsky 0.00004 NaN -37.9192 12
Beta’ 0.00001 NaN -43.2408 9

226 1 Rank is based on the AIC criteria
227 2 NAN The number of model parameters is equal to or greater than the observations and cannot be calculated Model
228 - Data could not be fitted by the model.

229
230
231
232
233
234
235
236
237
238
239
240
241
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242  Table 5. Values of fitted coefficients and measurable parameters of 18 developmental rate models
243  to describe immature stage development of the Ceratitis capitata in Mazandaran province.

Model Parameter Value
Pradhan-Taylor T 0.08524 (0.07732, 0.09316)
Topt (°C) 31
To (°C) 9.459 (7.418, 11.5)
Logan-6 Ar 4.99 (-27.04, 37.02)
Y 0.004267 (-0.00202, 0.01055)
p 0.1296 (-0.4758, 0.735)
Tmax (°C) 38.01 (31.58, 44.44)
Topt (°C) 31.9
Hilbert and Logan D 56.45 (-1.123e+05, 1.124e+05)
Ar 3.526 (-62.35, 69.41)
Y 0.5187 (-2048, 2049)
Tmin (°C) 3.911 (-112.4, 120.3)
Tmax (°C) 40 (-140.6, 220.6)
Topt (°C) 31.72
Lactin-2 A 1.929 (-4.485, 8.344)
yl -1.047 (-1.08, -1.015)
P 0.00435 (0.002843, 0.005857)
Tmin (OC) 10.59
Trmax (°C) 41.55 (20.71, 62.39)
Topt (°C) 32.3
Analytis-1 P 0.3931 (-11.38, 12.16)
m 0.6314 (-14.28, 15.54)
n 2.2 (-29.77, 34.17)
Tmin(°C) 5.52 (-142.3, 153.3)
Tmax(°C) 38.93 (-58.59, 136.4)
Topt (°C) 31.09
. 3.286e+05 (-4.495e+12,
Analytis-2 P 4.4956+12)
m 2.735 (-25.89, 31.35)
n 4.132 (-3.505e+06, 3.505e+06)
Tmin (°C) 6.376 (-94.12, 106.9)
Tmax (°C) 55.92 (-39.66, 151.5)
Topt (°C) 31.09
Analytis-
1/Allahyari P 0.2319 (-6.458, 6.922)
m 4 (-96.35, 104.4)
n 2.038 (-54.85, 58.92)
Tmin (°C) 3.903 (-328, 335.8)
Timax (°C) 39.97 (12.65, 67.29)
Topt (°C)
Analytis-3 a 9.417e-05 (-0.0102, 0.01039)
m 0.6681 (-14.83, 16.17)
n 1.72 (-17.79, 21.23)
Tmin (°C) 8.793 (-72.46, 90.05)
Tmax (°C) 40.2 (-84.11, 164.5)
Topt (°C) 31.09
Bri 4.951e-05 (3.529e-05, 6.373e-
riere-1 a 05)
tmin (°C) 9.553 (6.264, 12.84)
Timax (°C) 38.07 (36.43, 39.7)
Topt (°C) 31.9
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5.522e-05 (-0.0001026,

Briere-2 a 0.0002131)
n 2.192 (-3.56, 7.945)
Tmin (°C) 9.267 (-0.188, 18.72)
Timax (°C) 37.62 (25.82, 49.42)
Topt (°C) 31.64
gﬁ'}f&imas a 1.351e-05 (6.226¢-06, 2.08¢-05)
Tmin (°C) 7.963 (5.177, 10.75)
Trmax (°C) 42.87 (39.27, 46.47)
Topt (°C) 31.23
Janisch/Kontodimas Donin 4.968 (0.4977, 9.439)
k 0.0742 (-0.2308, 0.3792)
A 0.05016 (-0.06608, 0.1664)
Topt (°C) 34.25 (-13.09, 81.58)
Janisch/Rochat C 0.08659 (0.05224, 0.1209)
a 1.116 (0.7389, 1.492)
b 1.143 (0.9574, 1.328)
Timax (°C) 30.06 (10.85, 49.28)
Topt (°C) 30.9
p . . -1.372e-05 (-4.413e-05, 1.669e-
olynomial (cubic) ao 05)
a1 0.000812 (-0.001498, 0.003122)
a -0.01055 (-0.06684, 0.04575)
as 0.04067 (-0.3963, 0.4777)
Tmin (OC)
Tmax (°C) 42.849
Topt (°C) 31.3
Performance-1 C 2.162 (-474.5, 478.8)
K1 0.002354 (-0.5263, 0.531)
K2 0.3431 (-3.903, 4.59)
Tmin(°C) 11.23 (-3.707, 26.17)
Tmax(°C) 38.1(14.27, 61.92)
Topt (°C) 31.94
Performance-2 K2 0.3956 (-0.8109, 1.602)
m 0.004867 (0.002948, 0.006786)
Tmin(OC) 1099 (762, 1436)
Trax(°C) 37.71 (30.48, 44.93)
Topt (°C) 32.071
Wang c 0.2473 (-68.09, 68.59)
K1 0.001469 (-14.51, 14.51)
K2 0.3611 (-75.46, 76.18)
m 3.15 (-3.069e+04, 3.07e+04)
Tmin(°C) 9.626 (-89.9, 109.2)
Tmax(°C) 38.06 (-284.2, 360.3)
Topt (°C) 31.97
Beta Im 0.08657 (0.07226, 0.1009)
Tmin(°C) 3.865 (-35.25, 42.98)
Tmax(°C) 41.44 (31.5, 51.38)
Topt (°C) 31.29 (29.23, 33.35)
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Table 6. Values of fitted coefficients and measurable parameters of 5 developmental rate models
to describe total immature stage development of the Ceratitis capitata in Fars province.

Model Parameter Value
Lactin-2 A -
A
p
Tmin (OC)
Tmax (°C)
Topt (°C)
Analytis-3 a
m
n
Tmin (OC)
Tmax (OC)
Topt (°C) -
Briere-1 a 5.284e-05 (-0.0001954, 0.0003011)
tmin (°C) 11.61 (-21.42, 44.65)
Tmax (°C) 39.25 (-21.12, 99.62)
Topt (°C) 32.81
Briere-2 a 6.26e-05
n 2.383
Tmin (OC) 10.78
Tmax (°C) 38.57
Topt (°C) 33.01
Performance-2 K2 0.3271
m 0.005697
Tmin(°C) 13.15
Tmax(°C) 37.74
Topt (°C) 31.8
Discussion

Determining the developmental time at different temperatures is necessary to calculate the
developmental rate. The present findings in Mazandaran province was different from the results of
Ricalde et al. (2012) and Grout and Stoltz, 2007 at similar temperatures. Therefore, Ricalde et al.
(2012), obtained the most extended period of developmental time of total immature stages of
C.capitata was 71.20 d. at 15°C and the shortest, 16.90 d. at 30°C. Furthermore, Grout and Stoltz,
(2007) reported that the longest developmental time of total immature stages of C.capitata at 14°C
was 83.6 d. and the shortest, 21.2 d. at 30°C. The differences in the obtained results can be caused
by regional climatic variability (e.g., temperature, humidity and rainfall), which can affect the
development and survival of C. capitata populations (Papadogiorgou et al., 2024). Linear models
only estimate a lower temperature threshold, and this is proper for analysis of the phenology of

insect populations due to simplifying the analysis (Ikemoto & Kiritani, 2019).
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In the present study, lower temperature thresholds and thermal constant were estimated using both
ordinary and lkemoto linear models. A comparison of total developmental time at different
temperatures showed that the linear range was up to 30°C for the population of Mazandaran and
Fars provinces. The RZq; coefficients used to fit the regression between temperature and the
developmental rate were higher for the Ikemoto linear model on the two populations tested.

The lower temperature threshold for total immature stages was estimated by the Ikemoto linear
model at 10.80 °C and 12.69°C, for the Mazandaran and Fars provinces, respectively. The lower
temperature threshold values estimated by Ricalde et al. (2012) (9.10, 9.30, 9.60°C) and Grout and
Stoltz (2007) (9.9°C) are closer our result of Mazandaran province. Based on Honek and Kocourek
(1990) To decreased if K increased therefore, the thermal constant of total immature stages of C.
capitata for the two linear ordinary and Ikemoto linear models were obtained at 294.94 and 228.86
degree days in Mazandaran province, while it was 168.35 and 188.59 degree days In Fars province,
respectively. The result reported by Grout and Stoltz (2007) 337.8 (DD), and Ricalde et al. (2012)
350, 341 and 328 (DD) were higher than our results.

Many abiotic factors affect the growth and development of insects. Temperature is the most
significant environmental factor influencing insect development, survival, behavior, and
distribution (Fletcher, 1989). Biological parameters like developmental zero and the thermal
constant are supposed to be the limiting factors in the geographic distribution of fruit flies (Ye,
2001). The developmental response of insects to temperature can help to predict their occurrence
and, therefore, assist in monitoring and control strategies for pests. Different species of Tephritidae
have particular optimal temperature ranges for development, which are limited by low and high
thresholds (Honék and Kocourek, 1990). Different temperature characteristics, may be affected by
pest species (Honek, 1999), pest population (Lee and Elliott, 1998), growth, and development
stages (Honek, 1996; Kocourek and Stara, 2005) and other ecological factors such as food source
(Golizadeh et al., 2007), and interspecies and intraspecies competition (Duyck and Quilici, 2004)
and the difference may be due to one or a set of the above factors. Model selection is critical
because of the significant differences between model predictions. Rebaudo and Rabhi (2018) point
out each of the criteria for model selection has its advantages and disadvantages therefore, a
combination of different methods should be used in model selection, e. g. the AIC criteria can
separate several models with the same R%gj and SSE. In most studies, the AIC index has been
mentioned as the best statistical parameter to measure the validity of models furthermore, model
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selection should be performed based on observations and biological and ecological information or
biological significance (Arbabtafti et al. 2023). A standard method for evaluating the accuracy of
estimated critical temperatures is based on their comparison with experimental data (Kontodimas
et al., 2004).

Conclusions

The findings of this study especially in relation to temperatures, can be used to accurately
predicting C.capitata population development in different provinces and enable us to choose the
best time for controlling this pest. Since the development rate of C.capitata may be influenced by
factors such as host plants of C.capitata, further studies should be done on different host plants to

obtain the best development models.
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