Akinola, R., Pereira, L. M., Mabhaudhi, T., De Bruin, F. M. and Rusch, L. 2020. A review of indigenous food crops in Africa and the implications for more sustainable and healthy food systems. Sustainability 12:3493. doi: 10.3390/su12083493
Akpoti, K., Kabo-bah, A. T., Dossou-Yovo, E. R., Groen, T. A. and Zwart, S.J. 2020. Mapping suitability for rice production in inland valley landscapes in Benin and Togo using environmental niche modeling. Sci. Total Environ. 709: 136165 https://doi.org/ 10.1016/j.scitotenv.2019.136165.
Ali, F., Khan, N., Khan, A.M., Ali, K. and Abbas, F. 2023. Species distribution modelling of Montotheca buxifolia (Falc.) A. DA.: present distribution and impacts of potential climate change. Heliyon 9: https://doi.org/10.1016/j.heliyon.2023.e13417
Atwater, D. Z., Ervine, C. and Barney, J.N. 2018 Climatic niche shifts are common in introduced plants. Nat. Ecol. Eval. 2: 34–43.
Banik, B.C., Ghosh, S.N. and Singh, S. R. 2012. Research and development in Karonda (Carissa carandas), a semi wild fruit in India. In: Proceeding of first International Symposium on Wild Relatives Subtropic and Temperate Fruits and Nuts Crops. M.K. Aradhya and D.A. Kluepfel (EDS.) pp. 61-65.
Bhandari, A., Joshi, R., Thapa, M. S., Sharma, R.P. and Rauniyar, S.K. 2022 Land cover changes and its impact in crop yield: a case study from western Nepal. Sci. World J. https://doi.org/10.1155/2022/5129423
Bilton, M.C., Metz, J. and Tielorger, K. 2016. Climatic niche groups: a novel application of a common assumption predicting plant community response to climate change. PPEES 19: 61-69.
Bow, C. and Haq, N. 2010. Quantifying the global environmental niche of an underutilised tropical fruit tree (Tamarindus indica) using herbarium records. Agric. Ecosyst. and Environ. 139: 51-58.
Chaturvedi, R.K., Joshi, J., Jayaraman, M., Bala, G. and Ravindranath, N.H. 2012. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 103(7): 791-802.
Chibarabada, T.P., Modi, A.T. and Mabhaudhi, T. 2020. Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions. Agr. Forest Meteoro 281: 107850 https://doi.org/10.1016/j. agrformet.2019.107850
CIAH. 2014. Annual Report Central Institute for Arid Horticulture, Bikaner, Rajasthan
CIAH. 2020. Annual Report Central Institute for Arid Horticulture, Bikaner, Rajasthan
Coban, H.O., Orucu, O.K. and Arslan, E.S. 2020. MaxEnt modelling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 2671: doi:10.3390/su12072671.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. and Zimmermann, N.E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151
Fick, S.E. and Hijmans, R.J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol 37 (12): 4302-4315.
Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L. and Wiberg, D. 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria and FAO, Rome, Italy. https://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/harmonized-world-soil-database-v12/en
GBIF.org (12 April 2023) GBIF Occurrence Download https://doi.org/10.15468/dl.ags3ht
Ghosh, S., Sarkar, T., Chakraborty, R. 2023. Underutilized plant sources: a hidden treasure of natural colors. Food Biosci. 52: 102361. https://doi.org/10.1016/j.fbio.2023.102361
Guisan, A. and Thuiller, W. 2005. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8: 993–1009 (2005).
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. 2005. Very high-resolution in-terpolated climate surfaces for global land area. Int. J. Climatol. 25 (15): 1965-1968
Jezkova, T. and Wiens, J.J. 2016. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. Biol. Sci. 283: 20162104 (2016).
Jijon, J.D., Gaudry, K.H., Constante, J. and Valencia, C. 2021. Augmenting the spatial resolution of climate-change temperature projections for city planners and local decision makers. Environ. Res. Lett. 16: https://doi.org/10.1088/1748-9326/abf7f2
Kagnew, B.; Assefa, A., Degu, A. 2023. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600
Kanupriya, C., Tripathi, P.C., Singh, P., Venugopalan, R. and Radhika, V. 2019. Analysis of morphological, biochemical and molecular diversity in karonda (Carissa carandas L.) germplasm. Fruits 74 (3): 130-140. https://doi.org/10.17660/th2019/74.3.5
Kass, J.M., Vilela, B., Aiello‐Lammens, M.E., Muscarella, R., Merow, C., Anderson, R.P. 2021. Wallace: A flexible platform for reproducible modelling of species niches and distributions built for community expansion. Methods Ecol. Evol. 9: 1151–1156. https://doi.org/10.1111/2041-210X.12945
Knez, M., Ranic, M. and Gurinovic, M. 2023. Underutilized plant increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate!. Nut. Rev. 82(2): 1111-1124. https://pmc.ncbi.nlm.nih.gov/articles/PMC11233877/pdf/nuad103.pdf
Koch, O., Mengesha, W.A., Pironon, S., Pagella, T., Ondo, I., Rosa, O., Wilkin, P. and Borrell, J.S. 2022. Modelling potential range expansion of an underutilised food security crop in sub- Saharan Africa. Environ. Res. Lett. 17: https://doi.org/10.1088/1748-9326/ac40b2
Kogo, B.K., Kumar, L., Koech, R. and Kariyawasam, C.S. 2019. Modelling climate suitability for rainfed maize cultivation in Kenya using a maximum entropy (MAXENT) approach. Agronomy 9 (11): https://doi.org/10.3390/agronomy9110727
Krishna, H., Chauhan, N. and Shamra, B.D. 2017. Evaluation of karonda (Carissa carandus L.) derived natural colourant cum nutraceuticals-supplement. Int. J. Minor Fruits, Med. Aromatic Plants 3(2): 28-33.
Liu, C., Wolter, C., Zian, W. and Jeschker, J. M. 2020. Most invasive species largely conserve their climatic niche. PNAS 117: 31-38.
Maanik, Deep, J.B., Kumar, R., Sharma, R., Gupta, S., Choudhary, A., Thakur, N. an Sharma, T. 2023. Economic analysis of propagation studies on karonda (Carrisa carandas L.) under Jammu sub-tropics: a comparative study. The Pharma Innovation, 12 (8): 1242-1246. https://www.thepharmajournal.com/archives/2023/vol12issue8/PartO/12-8-94-942.pdf
Mahajan, M., Bons, H.K., Dhillon, G.K. and Sachdeva, P.A. 2022. Unlocking the impact of drying methods on quality attributes of an unexploited fruit, karonda (Carissa carandas L.): a step towards food and nutritional security, South Afr. J. Bot. 145: 473–480, https://doi.org/10.1016/j.sajb.2022.03.008
Mathur, M., Mathur, P. and Purohit, H. 2023. Ecological niche modelling of a critically endangered species Commiphora wightii (Arn.) Bhandari using bioclimatic and non-bioclimatic variables. Ecol. Processes 12: 8. https://doi.org/10.1186/s13717-023-00423-2
Mathur, P. and Mathur, M. 2023. Machine learning ensemble species distribution modelling of an endangered arid land tree Tecomella undulata: a global appraisal. Arabian J. of Geosci. 16: 131. https://doi.org/10.1007/s12517-023-11229-z
Mathur, M. and Mathur, P. 2024. Comparative Assessment of Different Earth System Models for Habitat Suitability of Cuminum cyminum (Linn.) Crop: A Machine Learning Evaluation from Arid and Semi-Arid Hot Areas of the India. Indian J. Plant Genetic Resour. 37(2): 316-340. DOI: https://doi.org/10.61949/
Mayes, S., Massawe, F.J., Alderson, P. G., Roberts, J.A., Azam-Ali, S.N. and Hermann, M. 2012. The potential for underutilized crops to improve security of food production. J. Experi. Bot. 63 (3): 1075-1079.
Meena, V.S., Gora, J.S., Singh, A., Ram, C., Meena, N.K., Rouphael, Y., Basile, B. and Kumar, P. 2022. Underutilized Fruit Crops of Indian Arid and Semi-Arid Regions: Importance, Conservation and Utilization Strategies. Horticulture 8: 171. https://doi.org/ 10.3390/horticulturae802017
Meena, V.S., Pratap, B., Bhatt, K.C., Pradeep, K., Meena, N.L., Kumar, A. and Singh, K. 2020. Physico-chemical studies on maroon coloured karonda (Carissa carandus) collected from Uttar Pradesh, India. Int. J. Econ. plants 7(1): 34-37.
Meghwal, P.R., Singh, S.K., Singh, A. and Pathak, R. 2014. Characterization of karonda (Carissa carandas) accession under arid region. J. Appl.Horti. 16(2): 157-160.
Mishra, B., Tomaer, V., and Kumar, A. 2024. Karonda (Carissa carandas L.): a miracle fruit with multifaceted potential. J. Agri. Food Res. 101417. https://doi.org/10.1016/j.jafr.2024.101417
Mugiyo, H., Chimonyo, V.G.P., Kunz, R., Sinanda, M., Nhamo, L., Masemola, C.R., Modi, A.T. and Mabhaudhi, T. 2022. Mapping the spatial distribution of underutilized crops species under climate change using the MaxENT model: A case of KwaZulu-Natal, South Africa. Climate Services 28: https://doi.org/10.1016/j.cliser.2022.100330
Nunez-Penichet, C., Cobos, M.E. and Soberon, J. 2021. Non-overlapping climatic niches and biogeographic barriers explain disjunct distributions of continental Urania moths. Front. Biogeogr. 13(2): e52142
Nyathi, M. K., van Halsema, G. .E, Annandale, J. G. and Struik, P. C. 2018. Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes. Agri. Water Manag.t 208: 107–119. https://doi. org/10.1016/j.agwat.2018.06.012
Olayinka Atoyebi, J., Osilesi, O., Adebawo, O. and Abberton, M. 2017. Evaluation of nutrient parameters of selected African accessions of bambara groundnut (Vigna subterranea (L.) Verdc.). Am. J. Food and Nut. 5 (3): 83–89. https://doi.org/10.12691/ ajfn-5-3-1.
Osorio-Olvera, L., Lira-Noriega, A., Soberon, J., Townsend, P.A., Falcon, M., Contrears-Diaz, R.G., Martinez-Meyer, E., Barve, V. and Barve, N. (2020a). Ntbox: an R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11: 1199-1206 doi:10.1111/2041-210X.13452. https://github.com/luismurao/ntbox
Osorio-Olvera, L., Yañez‐Arenas, C., Martínez-Meyer, E. and Peterson, A.T. 2020b. Relationships between population densities and niche-centroid distances in North American birds. Ecol. Lett. 23: 555–564. https://doi. org/10.1111/ele.13453
Padder, A.H. and Mathavan, B. 2022. Dynamics of land use and land cover change in Jammu and Kashmir. Journal of Agriculture and Horticulture Research, 5 (2): 104-112.
Padulosi, S., Thompson, J., Rudebjer, P. 2013. Fighting poverty, hunger and malnutrition with neglected and underutilized species: needs, challenges and the way forward. Bioversity Int. 60 p. https://hdl.handle.net/10568/68927
Phillips, S.J., Anderson, R.P. and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190 (3-4): 231–259. 10.1016/j.ecolmodel.2005.03.026.
Pradhan, P. 2016. Strengthening Maxent modelling through screening of redundant explanatory Bioclimatic Variables with Variance inflation factor analysis. Researcher 8 (5): 29–34.
Praveen, S., Kaur, S., Baishy,a R. and Goel, S. 2022. Predicting the potential suitable habitats of genus Nymphae in India using MaxEnt modelling. Environ. Monit. Assess. 194: 853. https://doi.org/10.1007/s10661-022-10524-8
Rathore, P., Roy, A. and Karnatak, H. 2022. Predicting the future of species assemblages under climate and laund use land cover in Himalaya: a geospatial modelling approach. Clim Change Ecol. 3: http://creativecommons.org/licenses/by-nc-nd/4.0/
Ratnayake, S.S., Kumar, L., Kariawasam, C.S. 2020. Neglected and underutilized fruit species in Sri Lanka: prioritisation and understanding the potential distribution under climate change. Agronomy 10 (34): doi:10.3390/agronomy10010034
Sarkar, T. 2024. Karonda: an underutilized fruit crop, promise as a significant asset for rural economies. International J. Agr. Food Sci. 6 (2): 156-158. https://doi.org/10.33545/2664844X.2024.v6.i2b.217
Singh, A.K. and Singh, P. 1998. Power of significance of difference among fruit and seed size parameters of karonda (Carrisa carandus Linn.). Ann. Rev. Agri. Res. 19: 6671.
Singh, I.S., Awasthi, O.P. and Meena, S.R. 2010. Influence of tree plantation on soil physico-chemical properties in arid region. Indian J. Agrofor. 12(20): 42-47.
Sofaer, H.R., Jarnevich, C.S., Pearse, I.S., Smyth, R.L., Auer, S., Cook, C.L., Edwards, T.C., Guala, G.F., Howard, T.G., Morisette, J.T. Hamilton, H. 2019. Development and delivery of species distribution models to inform decision making. Biosci. 69 (7): 544-557.
Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughs GO, Rouget M (2005a) Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11(12): 2234–2250
Wang, W., Zhang, C., Li, W., Boyer, M.A., Segerson, K. and Silander, J. 2016. Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land 25: doi:10.3390/land5030025
Williams, J.T. and Haq, N. 2002. Global Research on Underutilized Crops. An Assessment of Current Activities and Proposals for Enhanced Cooperation, pp. 46.
Zhang, Y., Tang, J., Ren, G., Zhao, K. and Wang, X. 2021. Global potential distribution prediction of Xanthium italicum based on Maxent Model. Sci. Rep. https://doi.org/10.1038/s41598-021-96041-z