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ABSTRACT 4 

This study was conducted to assess the habitat suitability of Carissa carandas in India is 5 

crucial for its sustainable integration into agriculture under changing climatic conditions. This 6 

study utilized Maximum Entropy (MaxEnt) modelling to evaluate the species’ distribution 7 

across current and future scenarios (2050 and 2070) under four Representative Concentration 8 

Pathways (RCPs: 2.6, 4.5, 6.0, and 8.5). Results indicated that temperature-related variables, 9 

particularly the Minimum Temperature of the Coldest Month (MiTCM, contributing 46.8% in 10 

2070 RCP 2.6) and Isothermality (contributing up to 35.2% in 2070 RCP 8.5), are the 11 

dominant climatic drivers. Land use and land cover (LULC) factors such as urbanization 12 

(49.8%), total cultivated land (28.1%), and grassland (9.0%) significantly influence habitat 13 

suitability. Under current conditions, optimal habitat spans 4,588 km², decreasing by 38.95% 14 

under LULC scenarios. Projected habitat changes indicate a 2.04% gain under 2070 RCP 2.6 15 

but an 11.06% decline under 2050 RCP 2.6. Southern and western regions, including 16 

Karnataka, Tamil Nadu, Maharashtra, and Gujarat, exhibit high suitability, habitat 17 

fragmentation is projected in northern and western India due to climate change and land use 18 

modifications. These findings underscore the need for proactive conservation planning and 19 

climate-adaptive agricultural strategies to optimize the cultivation of C. carandas. 20 

Policymakers and stakeholders should focus on preserving suitable regions while mitigating 21 

urbanization-induced habitat loss. Furthermore, integrating underutilized crops into climate-22 

resilient agriculture can enhance biodiversity, improve food security, and support sustainable 23 

farming practices in the face of climate change. 24 

Keywords Carissa carandas, Climate Change, MaxEnt Modelling, Underutilized Crop, 25 

Urbanization. 26 
 27 
INTRODUCTION 28 

Underutilized plant species are domesticated or wild plant species that have economic, 29 

nutritional, medicinal, or ecological value but are not widely cultivated, traded, or researched 30 

(Ghosh et al., 2023). These species are often locally important but remain underdeveloped in 31 
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terms of agronomic improvements, policy support, and market integration (Padulosi et al., 32 

2013). Such species have some specific traits like limited commercialization, local or 33 

indigenous importance, high resilience and adaptability, nutritional and medicinal benefits and 34 

contributing to agrobiodiversity and Carissa carandas, Moringa oleifera, Ensete ventricosum 35 

and Chenopodium quinoa are the few examples (Knez et al., 2023). Further, such species 36 

could lead to innovative crop cultivation. Despite climate change, farmers can increase their 37 

income by producing these agricultural commodities sustainably (Akinola et al. 2020; Meena 38 

et al. 2022; Mugiyo et al., 2022). 39 

Despite their alleged ability to adapt to sub-optimal environments and changes in climate, 40 

there is a lack of scholarly studies focused on the consequences of climate change on their 41 

spatial and temporal distribution. The limited extent of policy and decision-making 42 

procedures presents a barrier to the integration of smallholder farmers into adaptation 43 

strategies (Olayinka Atoyebi et al., 2017). Given the current circumstances, a cohort of 44 

esteemed researchers is advocating for the assimilation of overlooked crop varieties into 45 

agricultural and dietary frameworks in response to the ramifications of climate change 46 

(Nyathi et al., 2018; Chibarabada et al., 2020). Smallholder farmer integration into adaptation 47 

strategies is hindered by policy and decision-making gaps (Olayinka Atoyebi et al., 2017). 48 

Due to climate change, esteemed researchers are advocating for the inclusion of overlooked 49 

crop varieties in agricultural and dietary frameworks (Chibarabada et al., 2020). 50 

Spatial modelling and analysis can reveal underutilized species distribution patterns 51 

(Mathur et al. 2023). Species Distribution Modelling (SDMs) combine species occurrence 52 

data with topographical and climatic factors to create cartographic representations of past, 53 

present, and future species distributions (Akpoti et al., 2020). The correlation between 54 

environmental variables and species occurrence records helps researchers understand 55 

ecological or evolutionary mechanisms and predict macroscopic agro-ecology suitability 56 

(Mathur and Mathur, 2023).  57 

Carissa carandas, (Hindi= Karondais) is an Indian Apocynaceae species and Commonly 58 

called "Christ's Thorn." It’s an evergreen shrub (Figure 1A) blooms elegant white flowers 59 

from December to April (Figure 1B). Within Indian states like Gujarat, Karnataka, and Uttar 60 

Pradesh, gardens, orchards, and small-scale plantations grow this plant for bio-fencing, live-61 

fencing, and aesthetics (Meena et al., 2022). This species can produce 5–8 kilograms of fruit 62 

in arid and semi-arid regions with little care (Figure 1C). According to Krishna et al. (2017), 63 

the botanical specimen can yield 10–15 kilograms per tree when grown under proper agrarian 64 
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conditions. It used as vegetable; immature fruit is usually used in pickling and chutney. 65 

However, fully matured fruit is eaten raw or made into confectioneries and natural food 66 

colorants (Singh et al., 1998). Iron-rich Karonda fruit has 39 milligrams per 100 grams. 67 

Vitamin C-rich fruit treats anemia and scurvy (Kanupriya et al., 2019). Pectin makes pickles 68 

and jellies ideal for mature fruit (Figure 1D). These fruits can also be used to make popular 69 

preserves, drinks, and condiments.  70 

The habitat modelling of Carissa carandas (karonda) is significant for various ecological, 71 

agricultural, and conservation-related reasons, including its (a) ecological importance: C. 72 

carandas is a resilient, drought-tolerant shrub that flourishes in several climatic environments, 73 

and comprehending its habitat is essential for evaluating its contribution to biodiversity, 74 

particularly its relationships with pollinators and other plant species. (b) agricultural and 75 

commercial significance: the plant yields consumable fruits utilized in traditional medicine, 76 

food processing (jams, pickles), and nutraceutical sectors. Habitat modelling facilitates the 77 

identification of optimal places for its production, hence enhancing yield and profitability for 78 

farmers. It facilitates the advancement of sustainable agroforestry methods through the 79 

incorporation of C. carandas into agricultural systems. (c) conservation and sustainable 80 

utilization of its native populations are imperilled by habitat degradation, overharvesting, and 81 

alterations in land use. Modelling assists in conservation planning and in pinpointing regions 82 

suitable for protection. (d) climate resilience and adaptation: by examining its habitat 83 

preferences, researchers can assess its resilience to drought and fluctuating temperatures, 84 

rendering it a valuable species for climate adaptation strategies. Such studies can also be 85 

applied to reforestation initiatives aimed at mitigating soil erosion and desertification. In 86 

summary, habitat modeling of C. carandas is essential for enhancing its agricultural 87 

utilization, preserving its natural populations, and incorporating it into climate-resilient 88 

ecosystems.  89 

Additionally, this species' area-yield relationship, market authenticity, cost trends, and 90 

ecological studies have knowledge gaps ((Banik et al., 2012; Mahajan et al., 2022; Maanik et 91 

al., 2023; Mishra et al., 2024; Sarkar, 2024). These gaps make it difficult to understand how 92 

its distribution patterns relate to climate and land use. Given the scientific knowledge gaps, 93 

this study investigated the habitat suitability for this species. The study examined bio-climatic 94 

variables over different timescales, GHS scenarios, and land-use predictors. The Maxent 95 

model was used to assess how climate change affects the spatial arrangement of arable 96 

regions suitable for Carissa carandas fruit cultivation in India. Our specific goals are to (a) 97 



Journal of Agricultural Science and Technology (JAST), 27(6) 

In Press, Pre-Proof Version 

4 

 

identify the species' habitats, as delineated by current and projected climatic conditions over 98 

2050 and 2070, within four Greenhouse Gas (GHG) scenarios, (b) quantify the impact of 99 

diverse land utilization patterns on the species' habitat appropriateness, and (c) identify the 100 

manifold climatic and land use factors that exert influence on both the fundamental and 101 

realized niches of this species. 102 

 103 
MATERIAL AND METHODS 104 

Distributional Record 105 

Distributional records for this species were obtained from data repositories such as the 106 

Global Biodiversity Information Facility (GBIF https://doi.org/10.15468/dl.ags3ht), the Indian 107 

Biodiversity Portal (https://indiabiodiversity.org/species/show/32472), and published 108 

literature ((Singh et al., 2010; CIAH 2014 and 2020; Meghwal et al., 2014; Kanupriya et al.,  109 

2019; Meena et al., 2020) and our field work during 2005 to 2014 at various districts of arid 110 

and semi-arid areas of Rajasthan, India (Mathur and Mathur, 2023). To reduce spatial 111 

autocorrelation and eliminate duplicate records, we followed Sofaer et al. (2019) and used the 112 

spatial thinning window of "Wallace Software," a user-friendly graphical interface built on the 113 

R programming language (Kass et al., 2018), with a thinning distance of 10 kilometres. 114 

  115 
Bio-Climatic (Bio) and Non-Bioclimatic Variables (Non- Bio) 116 

Machine learning helps predict species distribution based on their current range (Praveen et 117 

al., 2022). In this study, WorldClim version 2.0 observational bio-climatic data was used to 118 

predict species distributions (Fick and Hijmans, 2017; 119 

https://www.worldclim.org/data/v1.4/cmip5_30s.html). The study used 19 bioclimatic 120 

variables from Hijmans et al. (2005), extracted at a 30-second spatial resolution (~1 km2). 121 

DIVA-GIS version 7.5 converted these variables to ASCII or ESRI ASCII (Coban et 122 

al., 2020). The 2050- and 2070-time frames, which represent the mean values from 2041 to 123 

2060 and 2061 to 2080, respectively, were used to collect data for current and two future 124 

climatic scenarios, according to Zhang et al. (2021). The future datasets are associated with 125 

four Representative Concentration Pathways (RCPs): 2.6 W/m2 (lowest emission), 4.5, 6.0, 126 

and 8.5 (highest emission, Chaturvedi et al., 2012). Table 1 summarizes bio-climatic 127 

parameters, including units and mathematical expressions. 128 

 129 
 130 

 131 

https://doi.org/10.15468/dl.ags3ht
https://www.worldclim.org/data/v1.4/cmip5_30s.html
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Land use and Land Cover (LULC) 132 

Various land use and land cover (LULC) predictors, including rain-fed and irrigated 133 

cultivated land, total cultivated land, forest, grass/scrub/woodland (GRS), barren/very 134 

sparsely vegetated land (NVG), urban land, land used for housing and infrastructure, and wet 135 

lands, have been employed to forecast the suitability of habitats for this particular species. 136 

These variables  were downloaded from https://www.fao.org/soils-portal/soil-survey/soil-137 

maps-and-databases/harmonized-world-soil-database-v12/en/ at a resolution of ~1 km2  138 

utilized as recommended by Fischer et al. (2008) 139 

 140 
Issue of Multicollinearity 141 

The Pearson Correlation Coefficient (r) was used to examine cross-correlation, and 142 

multicollinearity was examined to assess over-fitting. We also followed Pradhan et al. (2016) 143 

to eliminate variables with cross correlation coefficients of 0.85 or higher. This was 144 

accomplished through the utilization of the Niche Tool Box, as described by Osorio-Olvera et 145 

al. (2020a, b; https://github.com/luismurao/ntbox). A singular variable, which exhibits 146 

substantial cross-correlation and holds biological relevance to the species, was selected from a 147 

set of two alternative variables for the purpose of simplifying model interpretation (Mathur 148 

and Mathur 2023).  149 

 150 

Projection Transformation 151 

The Bio-Climatic (Bio) and Non- Bio variables were obtained from different sources and at 152 

different resolutions, so they must be standardized before extracting data and generating 153 

predictions using machine learning tools. We used ArcMap and ArcToolbox to follow a 154 

methodology for analysis. The Data Management Tools interface’s “projection and 155 

transformation” section explained the projection (Jijon et al., 2021). To quantify area under 156 

each habitat suitability class in Arc Map’s “calculate geometry” window, we converted the 157 

habitat class raster file projections to WGS 1984 web Mercator (auxiliary sphere-3857). 158 

 159 

Species Distribution Modelling 160 

The present study used Maxent 3.4.1 (http://www.cs.princeton.edu/schapire/Maxent/) to 161 

simulate and predict C. carandas plausible geographic distribution likelihood using the 162 

current scenario, two future scenarios (2050- and 2070-time frames), and a non-climatic 163 

variable. This tool’s discrete execution with each predictor in isolation allows us to accurately 164 

measure their impact on the species’ distributional pattern. Background points were randomly 165 

https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://github.com/luismurao/ntbox
http://www/
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generated at 10,000 (Zhang et al., 2021). We set the regularization multiplier to 0.1 to avoid 166 

test data overfitting. (Phillips et al., 2006), while the rest were left at their software defaults. 167 

To calibrate and validate Maxent model evaluation, threshold-independent receiver-operating 168 

characteristic (ROC) analyses were used, and an area under the receiver operating curve 169 

(AUC) was used to estimate model predictions (Elith et al., 2006). Based on the AUC value, 170 

the model was classified using the conservative guide suggested by Thuiller et al. (2005) and 171 

Kagnew et al. (2023) as: failing (0.5-0.6), poor (0.6-0.7), fair (0.7-0.8), good (0.8-0.9), or 172 

excellent (0.9-1). The model performs well with AUC values near one (Mathur et al., 2023). 173 

Variable Importance values and response curves were used to assess how bioclimatic and 174 

non-bioclimatic variables affected this species’ distribution (Mathur and Mathur, 2023). We 175 

then used ArcGIS to convert the Maxent output ASCII file into raster format and classified 176 

(Ali et al., 2023) this species’ habitat with help of “Raster Calculation Tool” into areas as 177 

optimal (1.0 to 0.80), moderate (0.80 to 0.60), marginal (0.60 to 0.40), low (0.40 and 0.20), 178 

and absent (< 0.20). Then, the optimum habitat raster file was converted into Keyhole Markup 179 

Language (KML) to accurately identify ideal habitat changes across diverse climatic temporal 180 

intervals and LULC compared to the current optimal habitats. Percent changes (gain and loss) 181 

in areas of optimum habitat suitability under different climatic and non-climatic variables in 182 

comparison to current optimum area calculated using following formula provided by (Mathur 183 

and Mathur, 2023). This exercise will allow us to quantify optimal habitats based on climatic 184 

time frames, RCPs, and LULC. 185 

 186 

Ellipsoid Niche Hypervolume  187 

Machine learning models offer a variety of significant variables to enhance the precision of 188 

species localization. The quantification of hypervolumes linked to the niches of this particular 189 

species was carried out by employing the top three predictors across all bioclimatic scenarios 190 

and RCPs, in addition to LULC variables. In the present study, we utilized 191 

NicheToolBox (Osorio-Olvera et al., 2020a) software program coded in the R programming 192 

language, necessitates the invocation of the raster output pertaining to BC variables. 193 

Ellipsoidal models were constructed through the calculation of the centroid and covariance 194 

matrix of the environmental values of the species. The research region is comprehensively 195 

examined, with all potential settings radiating outward from its geographic epicentre. Through 196 
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the utilization of this particular methodology, we are able to determine the environmental 197 

factors that dictate the fundamental and realized niche of said species. 198 

 199 
Results 200 

Multicollinearity and Model Performance 201 

By conducting an extensive examination of a wide array of sources (as mentioned in 202 

material and method) originating from the Indian region, we have effectively derived a total 203 

of 285 locations where this particular species can be found. Using Wallace Software's spatial 204 

thin window feature (Kass et al., 2021), we eliminated all instances of a record within a 10-205 

kilometer radius. Integrating 218 C. carandas presence points without spatial autocorrelation 206 

completed the ENM development process (Figure 1E). The final bioclimatic variables and 207 

their percentage contributions are shown in Table 2. Table 2 uses the "x" symbol to exclude 208 

variables from their bioclimatic time frame and RCPs. Based on their strong correlations with 209 

bioclimatic factors, Bio-1,2, 9,10,11,12,14,15, and 18 were excluded from future analyses. 210 

Figure 2a (current) and Figure 2b (LULC) show model quality results in terms of AUC. 211 

Additionally, Figures 2c to 2f show the 2050 climatic time frame results for each 212 

representative concentration pathway (RCP). Figures 3a-d show the 2070 results and RCPs. 213 

Since all AUC curves exceeded 0.80, model performance was good.  214 

 215 

Percent Contribution of Bio-climatic and LULC Variables 216 

Table 2 and Figure 4 show bio-climatic and LULC variable percentage contributions. The 217 

Minimum Temperature of Coldest Month (Bio-6 MiTCM) is the primary bio-climatic 218 

predictor that significantly affects this species' habitat suitability across various climatic time-219 

frames and RCPs, except for 2070 RCPs 6.0 and 8.5. In these situations, isothermality (Bio-220 

3), the ratio between the annual mean temperature and the mean diurnal range, controls the 221 

species most. This climatic variable is the second most influential factor in all future 222 

Representative Concentration Pathways. However, given the bioclimatic conditions, 223 

temperature seasonality (Bio-4) is the second most important factor affecting this species' 224 

habitat suitability. The Temperature Annual Range (Bio-7 TAR) and Mean Temperature of the 225 

Wettest Quarter (Bio-8 MeTWeQ) are the least effective bio-climatic factors. In land use and 226 

land cover (LULC) variables, urbanization, cultivated land, and grassland are influential. 227 

Their percentage contributions are 49.8, 28.1, and 9. Cultivated rain-fed and irrigated land, 228 

barren land, and wetlands have variable importance values below 2.0. 229 
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The supplementary material (Figures 1–10) shows response curves for the three most 230 

important bio-climatic and land use/land cover variables. The response curves showed that the 231 

projected species suitability values with MiTCM variables were highest at 150C for both 232 

present conditions and all future Representative Concentration Pathways (RCPs) except 6.0 233 

and 8.5 in 2070. Isothermaility has had the greatest impact on these two RCPs. Additionally, 234 

species suitability peaked at 50 and ranged from 40 to 55. Temperature seasonality peaks 235 

between 20 and 400 degrees Celsius. Urbanization and grassland have skewed curves in land 236 

use and land cover (LULC) variables. Urbanization peaks between 10 and 20, while grassland 237 

peaks between 5 and 10. Cultivated lands have a wider spectrum, peaking at 35 to 60. 238 

 239 
Habitat Suitability Areas (km2) 240 

Table 3 shows habitat suitability areas (km2) for optimal, moderate, marginal, and low 241 

habitat types. The spatial distribution of these areas is shown in Figure 5a for the current 242 

climatic time and in Figures 5b-e for 2050 and its RCPs. Figures 6a-d show 2070 habitat 243 

suitability and RCPs. Last, Figure 7 shows the land use-land cover (LULC) patterns for each 244 

habitat type: optimum (Figure 7a), moderate (Figure 7b), marginal (Figure 7c), and low 245 

(Figure 7d). In the optimal class, 2070RCP 2.6 had the largest land area (46.82 x 102). In 2050 246 

RCP 2.6, the bio-climatic variables had the smallest area (40.81 x 102), followed by 2070 RCP 247 

8.5. The optimal habitat type covers 45.88 x 102 square kilometres under current climate 248 

conditions. The LULC optimum suitability habitats (Square kilometres) had the smallest area, 249 

28.01 x 102. The areas with the greatest extent were moderate (70.85 x 102) and low (16.19 x 250 

103), under current bioclimatic conditions. Conversely, 2070 RCP 4.5 (34.51 x 102) and land 251 

use and land cover change (50.08 x 102) had the smallest areas for above classes. LULC had 252 

the highest marginal class area (15.04 x 103). 253 

Based on an analysis of habitat suitability classes and their spatial extents, this study 254 

proposes the existence of optimal regions in the southern (Karnataka and Tamil Nadu), as well 255 

as in the western (covering the western Ghat region of Maharashtra and Goa, and some 256 

scattered areas in Gujarat) areas of India which exhibit similar characteristics across various 257 

bio-climatic time frames and RCPs. Nonetheless, land use and land cover (LULC) predictors 258 

have shown fragmented patterns in optimum habitat. Furthermore, this habitat has been 259 

observed in both the eastern (Odisha, Jharkhand, West Bengal) and northern (Uttar Pradesh, 260 

New Delhi, Uttarakhand) parts of the country. Furthermore, given the current climatic 261 

conditions, it is found that specific regions in the west (Gujarat, Rajasthan), north (Uttar 262 

Pradesh), and south (Andhra Pradesh) are moderately favourable for this species. Given the 263 

http://jast.modares.ac.ir/files/jast/user_files_749497/atch/ravimm2099-A-10-75450-2-fac241e---4ac53d.doc
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steady evolution of climatic conditions projected for 2050, as well as the four RCPs, it is 264 

expected that certain portions of western India, particularly Maharashtra, will see the 265 

emergence of suitable habitats for this species. However, it is vital to highlight that habitat 266 

fragmentation is likely to occur in the country's northern territories, including Uttar Pradesh, 267 

as well as western portions (Gujarat and Rajasthan), resulting in the split and isolation of 268 

these ecosystems. The moderate portions of Gujarat (western part of the country) will either 269 

become a marginal habitat by 2070 (RCP 2.6) or proceed to an optimum habitat under RCP 270 

4.5, 6.0, and 8.5 scenarios. The central areas of India are distinguished by the presence of 271 

habitats with marginal or low ecological value. In addition to optimum habitat, we have 272 

documented fragmented and patchy habitats classified as moderate, marginal, or low with 273 

LULC. This species cannot be grown in the extreme western region (Rajasthan), which has a 274 

hot and arid climate and encompasses Barmer and Jaisalmer districts. Similarly, the northern 275 

region such as Jammu and Kashmir, as well as Ladakh, are unsuited for cultivation of this 276 

species. Finally, the eastern areas of the country, notably Arunachal Pradesh and Sikkim, do 277 

not have ideal circumstances for cultivating this plant. 278 

 279 

Spatial Changes in Optimum Habitats 280 

As evaluated using various predictors, Figure 8 shows the percentage changes in the most 281 

suitable habitat's extent relative to the optimal area. The spatial distribution of these 282 

alterations is shown in Figure 9a-e (current + 2050, along with their RCPs) and Figure 10a-d 283 

(current + 2070 RCPs) for two future climatic-time frames. Based on LULC parameters, this 284 

suitability class is highly fragmented. Comparatively, this fragmentation has decreased by 285 

38.95%. This species has a marginal gain of +2.04 for 2070 under the RCP 2.6 scenario and 286 

+1.06 under the RCP 4.5 scenario. With the previous one, hilly regions of norther India 287 

(Himachal Pradesh, Uttarakhand, Uttar Pradesh), western parts (covering areas adjoining to 288 

Ahmedabad, Morbi, Rapar, Bhabhar, Tharad, Dhanera, Deesa, Raniwara Gir National Park in 289 

Gujarat, and Bhinmal Gudamalani in Rajasthan) had the highest gain of 2070RCP4.5. 290 

However, optimal habitats decreased by -11.06% and -8.75% under the 2050 and 2070 291 

Representative Concentration Pathways (RCPs) 2.6 and 8.5, respectively. RCP 4.5, 6.0, and 292 

8.5 of 2050 showed less than 5% loss in optimum habitats (Figure 8). 293 

 294 

Ellipsoid Niche Hypervolume  295 

Using the existing dataset, we constructed an ellipsoid hypervolume, which represents a 296 

multidimensional space encompassing the available resources for a given species. This 297 
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hypervolume was employed to simulate both the fundamental niche, which refers to the 298 

species' capacity to persist and reproduce in a wider range of environments in the absence of 299 

interspecific competition, and the realized niche, which considers the species' interactions 300 

with other coexisting species. To achieve this, we utilized projected occurrence records of the 301 

species C. carandas, along with the pertinent environmental variables that were identified as 302 

crucial through the Maxent algorithm, presented in the form of raster output. This enables us 303 

to discern the variables that dictate both its fundamental and realized niche. The results are 304 

display in Figure 11a (current bio-climatic) and 11b (LULC), Figure 12a-d (2050 and its 305 

RCPS) and Figure 13a-d (2070 and its RCPS). Within these visual representations, the 306 

utilization of the blue hue signifies the concept of niche stability, while the incorporation of 307 

the color green conveys the notion of niche unfilling, denoting the extent to which the native 308 

niche remains unoccupied by the exotic niche. Additionally, the inclusion of the red hue 309 

serves to symbolize the phenomenon of niche expansion (Mathur and Mathur, 2023). The 310 

dimensions of these zones are directly proportional to the magnitude of their respective 311 

ecological niche. In terms of bioclimatic space, C. carandas ellipsoidal niche had a larger 312 

hypervolume (82.21 × 103 °C・mm2) with current bio-climatic conditions, followed by 2.6 313 

RCPs of 2050 (60.24 x 103 °C・mm2) and 2070 (57.16 x 103 °C・mm2), and among the 314 

bioclimatic variables it was recorded smallest was the smallest (23.06 × 102 °C・mm2 ) 315 

during the 2050 RCP 4.5. However, with LULC it was recorded minimum having 19.26 × 102 316 

°C・mm2 . The manifestation of environmental factors on the dynamics of ecological niches 317 

is denoted by the centroid values associated with said variables. The spatial proximity of these 318 

entities to the centroid serves as a reliable indicator of their capacity to exert influence over 319 

the suitability of species (Nunez-Penichet et al., 2021). The values pertaining to the centroid 320 

of various bio-climatic variables across three distinct time frames are displayed in Table 4. 321 

This species expands its ecological niche most beyond its fundamental niche in relation to 322 

precipitation levels during the wettest month (Bio-13, the water variable) in the current 323 

climate. Table 4 also shows that temperature seasonality (Bio-4) and the minimum 324 

temperature during the coldest month (Bio-6) help preserve these niche areas. This analysis of 325 

all four RCPs from 2070 shows that the warmest month's maximum temperature (Bio-5) 326 

controls the expansion of its fundamental niche. Alternatively, Isothermality, the minimum 327 

temperature of the coldest month, and the precipitation of the wettest month (2070 RCP 6.0) 328 

support said niche areas. Except for RCP 4.5 in 2050, the other RCPs suggest that, like the 329 

current situation, its niche expansion is primarily influenced by precipitation levels during the 330 
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wettest month. In RCP 4.5, the mean temperature of the wettest quarter (Bio-5) dominates this 331 

expansion. The centroid value of 52.93 for the LULC variables indicates that cultivated lands 332 

control C. carandas' fundamental niche expansion. Urbanization (13.29) and barren/sparsely 333 

vegetative areas (5.47) help this species maintain its niche. 334 

 335 

DISCUSSION 336 

The Asian continent persists in grappling with a significant incidence of malnutrition. The 337 

enduring state of malnutrition can be ascribed to a deficiency in dietary variety, coupled with 338 

a dearth of diversity in production. Dietary diversity encompasses the adoption of a 339 

nourishing, well-rounded, and heterogeneous dietary pattern, thereby guaranteeing the 340 

sufficiency of essential nutrients. The principle of dietary diversity is unequivocally endorsed 341 

in all national food-based dietary guidelines. Strategies centred around food that aim to 342 

combat malnutrition, particularly deficiencies in essential micronutrients, are intricately 343 

intertwined with scientifically substantiated dietary patterns. However, these approaches 344 

remain disjointed from the existing agricultural production system. The incorporation of 345 

promising yet underutilized species, characterized by their high nutrient density, climate 346 

resilience, profitability, and local availability and adaptability, plays a pivotal role in 347 

enhancing both dietary and production diversity (Mayes et al., 2012). 348 

By delineating the boundaries of suitable areas, scholarly inquiry can significantly 349 

strengthen the justification for integrating these crops into a holistic approach to climate 350 

adaptation. Furthermore, agronomists have the ability to utilize these maps in order to 351 

augment their understanding of the existing and future limitations on resources in each 352 

specific region and crop. Upon undergoing scrutiny by an agronomist, it becomes evident that 353 

maps possess the inherent capacity to expedite the discernment of the most appropriate 354 

agronomic methodology that harmonizes with the particular circumstances of the 355 

agriculturalist (Mugiyo et al., 2022; Mathur and Mathur, 2024). 356 

This study used four Representative Concentration Pathways (RCPs) to assess crop viability 357 

at various concentrations. The RCPs included a large trajectory (RCP8.5), a moderate 358 

trajectory (RCP4.5 and RCP6.0), and a small trajectory (RCP2.6). We wanted to determine 359 

crop sustainability potential across these trajectories. The environmental adaptation and eco-360 

geographic distribution of underutilized species have been widely recognised in scholarly 361 

literature (Williams and Haq, 2002; Mugiyo et al., 2022). Many underutilized species have 362 

adapted to inhospitable environments, preserving biodiversity and protecting against risks in 363 
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an ever-changing ecosystem. Thus, understanding their ecological adaptation and 364 

ecogeographic dispersion is crucial to selecting crops for future use (Bow and Haq, 2010).  365 

C. carandas is discussed as a climate-resilient, underutilized crop examine the factors 366 

affecting its domesticated areas, the fundamental niche, and its new viable areas, the realized 367 

niche, for its introduction. Koch et al. (2022) empirically supported our methods. Their 368 

research involves developing an ensemble model to characterize the distribution patterns of 369 

Ensete ventricosum, a perennial banana species grown only in southwestern Ethiopia. 370 

Ratnayake et al. (2020) advocated for predictive modelling in the management of neglected 371 

and underutilized fruit species (NUFS) in light of climate change, supporting our methods. 372 

The researchers examined Aegle marmelos, Annona muricata, Limonia acidissima, and 373 

Tamarindus indica species in both present and projected future climates (RCP 4.5 and RCP 374 

8.5) for 2050 and 2070. They used the widely-recognized maximum entropy (Maxent) species 375 

distribution modelling (SDM) approach to predict species distributions. The above methods 376 

have highlighted the need for climate change adaptation strategies and research to strengthen 377 

underutilized fruit crops against climate change. 378 

The current study has furnished a comprehensive nationwide database concerning the geo-379 

tagged spatial distribution of C. carandas. This dataset comprises 218 strategically thinned 380 

points, and its implications extend to practical assessments of favorable regions for crop 381 

cultivation, accurate productivity forecasting, and the facilitation of appropriate markets for 382 

these under-utilized crops. Moreover, it represents a crucial step towards the development of a 383 

user-friendly mobile application, such as "Kirshi-Kisan" 384 

(https://play.google.com/store/apps/details?id=com.cropdemonstrate&hl=en&gl=US) by 385 

government of India. 386 

The results of our habitat suitability analysis have revealed that the distribution dynamics of 387 

this particular species are primarily influenced by temperature-related variables rather than 388 

water-related variables, such as precipitation. Among temperature variables, Isothermality and 389 

the minimum temperature during the coldest months have the greatest impact on species 390 

distribution. Temperature annual range and wettest quarter mean temperature affect species 391 

distribution less. Moreover, by employing threshold values of effective temperature variables, 392 

such as a minimum temperature of 150C for the coldest month and an Isothermality peak of 393 

50, we can deduce the distribution pattern of this particular species. It becomes apparent that 394 

the species is predominantly found in the southern and western regions of the countries, while 395 

its presence is notably absent in the northern and eastern regions. In the regions of Gujarat, 396 

https://play.google.com/store/apps/details?id=com.cropdemonstrate&hl=en&gl=US
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Karnataka, Tamil Nādu, Andhra Pradesh, and certain areas of Rajasthan. These locations 397 

exhibit Isothermality, where the diurnal temperature range is half the annual temperature 398 

range. In essence, a numerical value of 100 represents a location where daily temperature 399 

fluctuations equal annual temperature variation. However, a numerical value of 50 indicates a 400 

location where the 24-hour temperature difference is half of the annual temperature range. 401 

According to Kogo et al. (2019), environmental factors tend to affect the appropriateness of 402 

different regions. Any deviation from these parameters affects crop suitability, whether 403 

positively or negatively. In India, C. carandas thrives in hot, humid climates. The main factors 404 

limiting C. carandas growth and development are temperature and seasonal fluctuations 405 

(Meena et al., 2022). 406 

The variables of urbanization, cultivated land, and grassland have been identified as 407 

influential factors in land use and land cover (LULC). Our analysis has shown that as 408 

urbanization increases by 10-20% and grassland expands by 5-10%, the likelihood of 409 

suitability for this particular species experiences a gradual but limited decrease. Nevertheless, 410 

this particular species demonstrates a remarkable adaptability to thrive within cultivated 411 

regions, owing to its significantly higher tolerance for land use and land cover changes. As 412 

mentioned, these areas are mostly in Karnataka, Tamil Nadu, and the Western Ghats of 413 

Maharashtra and Goa. There are also occasional suitable habitats for this species in Gujarat. 414 

We included all relevant bio-climatic temporal variations and Representative Concentration 415 

Pathways in our analysis. Representative Concentration Pathways (RCPs) were used to 416 

identify several Rajasthan locations. However, using Land Use and Land Cover (LULC) 417 

predictors, we found widely dispersed optimal habitats for this species in Odisha, Jharkhand, 418 

West Bengal, Uttar Pradesh, New Delhi, Uttarakhand, and Jharkhand.  419 

By utilizing the LULC variable, we have successfully documented the highest level of 420 

fragmentation within the optimal suitability category, resulting in a notable reduction of up to 421 

-38.95% when compared to its existing climatic extent. The phenomenon of fragmentation 422 

has been previously examined and conceptualized by Rathore et al. (2022). LULC changes 423 

should significantly impact C. carandas distribution in the study region. Urban heat islands 424 

show that human activity and ecosystem damage can raise local temperatures, so species 425 

composition may differ between urban and rural areas. Urbanization alters soil properties. 426 

Heavy metal and organic matter are higher in urban soils (Wang et al., 2016). Bhandari et al. 427 

(2022) and Padder and Mathavan (2022) quantified how land cover changes adversely 428 

affected rice and maize productivity. Unfortunately, this association for underutilized crops 429 
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has not been studied. This study helped us understand the causes and effects of underutilized 430 

crop productivity and its factors.  431 

Understanding niche dynamics is crucial to creating effective conservation strategies 432 

(Atwater et al., 2018; Liu et al., 2020). During habitat colonization, species change their niche 433 

space, which can maintain, expand, or contract. Variations in the realized niche—all the biotic 434 

and abiotic conditions a species is observed in nature—and the fundamental niche—the 435 

abiotic conditions needed for positive population growth without biotic interactions—436 

influence these changes (Guisan and Thuiller, 2005). Jezkova and Wiens (2016) found that 437 

changing realized and fundamental niches are distinct processes that do not overlap. We 438 

simulate C. carandas climatic and non-climatic fundamental and realized niche using a 439 

precise predictor. The ecological niche hypervolume analysis has shown that C. carandas 440 

'climatic niche is larger than its non-climatic niche, which is supported by Bilton et al. (2016). 441 

This study found that temperature-related factors are most important in determining the 442 

phenomenon's spatial range. Niche analysis has shown that the amount of precipitation 443 

received during the wettest month is the main factor affecting its ecological niche expansion 444 

during the current and projected 2050 climatic timeframe. Niche expansion is regulated by the 445 

warmest month's upper limit in 2070.  446 

 447 
CONCLUSIONS 448 

This study provides a comprehensive assessment of the habitat suitability of Carissa 449 

carandas in India, incorporating bio-climatic variables, greenhouse gas (GHG) scenarios, and 450 

land use/land cover (LULC) predictors. Using the MaxEnt model, we identified key 451 

environmental factors influencing the species' distribution, with temperature-related variables 452 

such as the minimum temperature of the coldest month and isothermality playing a dominant 453 

role. Future climate projections for 2050 and 2070 indicate shifts in suitable habitat, with the 454 

southern and western regions of India (including Karnataka, Tamil Nadu, Maharashtra, and 455 

Gujarat) continuing to be optimal areas, while habitat fragmentation is expected in the 456 

northern and western regions due to climate change and land use changes. The findings 457 

underscore the importance of integrating C. carandas into climate-resilient agricultural and 458 

conservation strategies. Given its adaptability and economic potential, promoting its 459 

cultivation in suitable regions can enhance biodiversity, support sustainable agriculture, and 460 

provide economic benefits to farmers. However, policy interventions are needed to mitigate 461 

the effects of urbanization and land-use changes on its habitat. Future research should focus 462 
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on refining habitat predictions using additional environmental factors and assessing the socio-463 

economic impact of cultivating this underutilized species. 464 
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 658 

Fig. 1. Carissa carandas an underutilized evergreen shrub (A), utilize in landscaping for their flower 659 
(B) and beautiful shiny fruits (C), cherries are useful for preparation of pickles and vegetable (D). 660 
Presence locations of the species, use for habitat suitability modelling (E). 661 

 662 

Fig.  2. The area under the receiver operating curve with current bio-climatic (a) and LULC (b) and 663 
future climatic time frame (2050) with four RCPs namely 2.6 (c), 4.5 (d), 6.0 (e) and 8.5 (f) 664 
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 665 

Fig. 3. The AUC curve with future climatic time frame (2070) with four RCPs namely 2.6 (a), 4.5 (b), 666 
6.0 (c) and 8.5 (d). 667 
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 669 
Fig.  4. Variable Importance values of Maxent output with different variables of LULC. 670 

 671 

 672 

 673 

 674 
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 675 

Fig.  5. Habitat suitability of C. carandas under different classes with current (a) and 2050 bio-676 
climatic time frame with its four RCP 2.6 (b), RCP 4.5 (c), RCP 6.0 (d) and RCP 8.5 (f). 677 

 678 

Fig. 6. Habitat suitability of C. carandas under different classes with 2070 bio-climatic time frame 679 
with its four RCP 2.6 (b), RCP 4.5 (c), RCP 6.0 (d) and RCP 8.5 (f). 680 
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 681 

Fig. 7. Habitat suitability of C. carandas under different classes with LULC: optimum (a), moderate 682 
(b), marginal (c), and low (d). 683 
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 684 

Fig.  8. Percent changes (gain and loss) in areas of optimum habitat suitability under different climatic 685 
and non-climatic variables in comparison to current optimum area. 686 
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 687 

Fig.  9. Superimposition of current optimum suitability sites (a) with different RCPs of 2050 2.6 (b), 688 
4.5 (c), 6.0 (d) and 8.5 (e). 689 

 690 

Fig. 10. Superimposition of current optimum suitability sites (a) with different RCPs of 2070 2.6 (b), 691 
4.5 (c), 6.0 (d) and 8.5 (e). 692 

 693 
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 694 
Fig. 11. Graphical representation of C. carandas niche hypervolume with three most influential 695 
variables pertains to current bioclimatic (a) and LULC (b) predictors. 696 

 697 

 698 
Fig. 12. Graphical representation of C. carandas niche hypervolume with three most influential 699 
variables pertains to 2050 bioclimatic time frame with its four RCPS namely 2.6 (a) 4.5 (b), 6.0 (c) 700 
and 8.5 (d). 701 
 702 

 703 
Fig. 13. Graphical representation of C. carandas niche hypervolume with three most influential 704 
variables pertains to 2070 bioclimatic time frame with its four RCPS namely 2.6 (a) 4.5 (b), 6.0 (c) 705 
and 8.5 (d). 706 
 707 
 708 



Journal of Agricultural Science and Technology (JAST), 27(6) 

In Press, Pre-Proof Version 

27 

 

Table 1. Description of predictive bio-climatic variables use in this study. 709 
Code Environmental variables and their abbreviations Scaling 

Factor 

Unit 

Bio -1 Annual Mean Temperature (AMT) 10 °C 

Bio -2 Mean Diurnal Range (MeDR) 10 °C 

Bio -3 Isothermality (Bio 2/ Bio 7) (×100) (Iso) 100 - 

Bio -4 Temperature Seasonality (standard deviation ×100) (TempS) 100 - 

Bio -5 Max Temperature of Warmest Month (MaTWaM) 10 °C 

Bio -6 Min Temperature of Coldest Month (MiTCM) 10 °C 

Bio -7 Temperature Annual Range (Bio 5- Bio 6) (TAR) 10 °C 

Bio -8 Mean Temperature of Wettest Quarter (MeTWeQ) 10 °C 

Bio -9 Mean Temperature of Driest Quarter (MeTDQ) 10 °C 

Bio -10 Mean Temperature of Warmest Quarter (MeTWaQ) 10 °C 

Bio -11 Mean Temperature of Coldest Quarter (MeTCQ) 10 °C 

Bio -12 Annual Precipitation (AnPr) 1 mm 

Bio -13 Precipitation of Wettest Month (PrWeM) 1 mm 

Bio -14 Precipitation of Driest Month (PrDM) 100 mm 

Bio -15 Precipitation Seasonality (Coefficient of Variation) (PrS) 1 Fraction 

Bio -16 Precipitation of Wettest Quarter (PrWeQ) 1 mm 

Bio -17 Precipitation of Driest Quarter (PrDQ) 1 mm 

Bio -18 Precipitation of Warmest Quarter (PrWaQ) 1 mm 

Bio -19 Precipitation of Coldest Quarter (PrCQ) 1 mm 

 710 
Table 2. Maxent output showing percent contribution of the different bioclimatic variables to the 711 
model in with respect to bioclimatic time-frames and their RCPs. 712 

Bio 

Variables Current 

2050 RCPs 2070 RCPs 

2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5 

Bio-3 x 28.3 27.4 25.9 33 25 28.7 34.6 35.2 

Bio-4 29.2 3.7 3.3 5.2 1.1 2.6 3.1 4.3 4 

Bio-5 x 14.7 x x 9 8.7 9.8 18.5 10.2 

Bio-6 36.9 33.3 42.1 38.9 35.6 46.8 36.5 0.7 28.3 

Bio-7 0.9 x 2.1 3.5 0.6 3.6 3.9 1.1 0.1 

Bio-8 4.7 1.3 7.9 5.1 3 3.8 1 10.4 4.8 

Bio-13 12.9 6.7 6.8 10.7 11.5 5.3 3.4 13.2 5.4 

Bio-16 5.3 6.4 5.9 6.3 6.2 4.2 7.5 10.8 9 

Bio-17 7.3 5.7 x x x x x x x 

Bio-19 2.8 x 4.5 4.4 x x 6.1 6.5 3 

 713 

Table 3.  Area (km2) of different habitat suitability classes with studied predictors. 714 

 Variables Optimum Moderate Marginal Low 

Current 45.88 x 102 70.85 x 102 12.78 x 103 16.19 x103 

Land use and Landcover 28.01 x 102 53.93 x 102 15.04 x 103 50.08 x 102 

2050RCP2.6 40.81 x 102 48.10 x 102 11.49 x 103 10.77 x 103 

2050RCP4.5 43.75 x 102 54.09 x 102 11.43 x 103 10.96 x 103 

2050RCP6.0 44.35 x 102 50.59 x 102 10.97 x 103 11.75 x 103 

2050RCP8.5 44.32 x 102 53.97 x 102 11.42 x 103 10.38 x 103 

2070RCP2.6 46.82 x 102 60.92 x 102 10.50 x 103 10.65 x 103 

2070RCP4.5 46.37 x 102 34.51 x 102 13.16 x 103 10.21 x 103 

2070RCP6.0 45.53 x 102 46.85 x 102 85.74 x 102 11.76 x 103 

2070RCP8.5 41.85 x 102 54.29 x 102 92.05 x 102 12.36 x 103 



Journal of Agricultural Science and Technology (JAST), 27(6) 

In Press, Pre-Proof Version 

28 

 

 715 
Table 4. Values of niche centroid of three most influential bio-climatic variables pertains to various 716 
time-frames and RCPs 717 

Bio 

Variables Current 

2050 RCPs 2070 RCPS 

2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5 

Bio-3 - 48.52 49.51 48.34 48.9 50.33 49.27 50 49.78 

Bio-4 358.72 - - - - - - - - 

Bio-5 - 386.45 - - - 384.27 393.86 499.02 402.63 

Bio-6 13.69 154.44 164.78 158.81 166.26 163.17 164.4 - 183.03 

Bio-8 - - 279.84 - - - - - - 

Bio-13 363.06 - - 465.02 442.04 - - 391.42 - 

 718 




