1. Adlig, N. and Gulcu, B. 2019. Trans-Cinnamik Asit ve Xenorhabdus szentirmaii Metabolitlerinin Bitki Patojeni Fungus Botrytis cinerea Mücadelesinde Kullanımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7: 2000-2008.
2. Akhurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol., 121: 303–309.
3. Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., & Dabur, R. 2009. Natural products – antifungal agents derived from plants. J Asian Nat. Prod. Res., 11(7), 621 -638.
4. Bock, C. H., Shapiro-Ilan, D. I., Wedge, D., & Cantrell, C. H. 2014. Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide. J. Pest Sci., 87: 155–162.
5. Bode, H. B. 2009. Entomopathogenic bacteria as a source of secondary metabolites, Curr. Opin. Chem. Biol., 13: 1–7.
6. Boemare, N. E., & Akhurst, R. J. 2006. The genera Photorhabdus and Xenorhabdus. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (pp. 451–494). New York: Springer Science + Business Media Inc.
7. Boszormenyi, E., Ersek, T., Fodor, A., Fodor, A.M., Foldes, L. S.,Hevesi,M., Hogan, J. S., Katona, Z., Klein, M. G., Kormany, A., Pekar, S., Szentirmai, A., Sztaricskai, F., & Taylor, R. A. J. 2009. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J. App. Microbiol., 107: 764–759.
8. Chacón-Orozco, J. G., Bueno, C. Jr., Shapiro-Ilan, D. I., Hazir, S., Leite, L. G., Harakava, R. 2020. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. metabolites and volatiles on the soilborne plant pathogenic Sclerotinia sclerotiorum. Sci. Rep., 10: 20649.
9. Coleman, J. J., Ghosh, S., Okoli, I., Mylonakis, E. 2011 Antifungal Activity of Microbial Secondary Metabolites. PLoS ONE 6(9): e25321.
10. Correa-Filho, L. C., Lourenco, M. M., Moldao-Martins, M., & Alves, V. D. 2019. Microencapsulation of beta-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Int. J. Food Sci., 2019: 1-12.
11. Donmez, O. H., Cimen, H., Ulug, D., Wenski, S., Yigit, O. S., Telli, M., Aydin, N., Bode, H. B., Hazir, S. 2019. Nematode-Associated Bacteria: Production of Antimicrobial Agent as a Presumptive Nominee for Curing Endodontic Infections Caused by Enterococcus faecalis. Front. Microbiol., 10: 2672.
12. Dreyer, J., Malan, A. P., & Dicks, L. M. T. 2018. Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds. Front. Microbiol., 9: 3177.
13. Fang, X. L., Li, Z. Z., Wang, Y. H., & Zhang, X. 2011. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J. App. Microbiol., 111(1): 145–154.
14. Fang, X., Zhang, M., Tang, Q., Wang, Y., & Zhang, X. 2014. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Sci. Rep., 4: 1–7.
15. Griffin, C. T., Boemare, N. E. and Lewis, E. E., 2005. Biology and behavior, Nematodes as biocontrol agents, Wallingford, UK: CABI Publishing, pp. 47–64.
16. Haggag, W. M. and Mohamed, H. A. A. 2007. Biotechnological Aspects of Microorganisms Used in Plant Biological Control. American-Eurasian Journal of Sustainable Agriculture, 1(1): 7-12.
17. Hazir, S., Shapiro-Ilan, D. I., Bock, C. H., Hazır, C., Leite, L. G., and Hotchkiss, M.W. 2016. Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens, Eur. J. Plant Pathol., 146: 369–381.
18. Hazir, S., Shapiro-Ilan, D. I., Bock, C., Leite, L. 2018. Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmaii. Eur. J. Plant Pathol., 150: 297-306.
19. Keller, N. P., Turner, G., Bennett, J. W. 2005. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol., 3: 937-47.
20. Koca, N., Erbay, Z., & Kaymak-Ertekin, F. 2015. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. J. Dairy Sci., 98(5), 2934–2943.
21. Kulkarni, R. A., Prabhuraj, A., Ashoka, J., Hanchinal, S. G. and Hiregoudar, S. 2017. Generation and evaluation of nanoparticles of supernatant of Photorhabdus luminescens (Thomas and Poinar) against mite and aphid pests of cotton for enhanced efficacy. Curr. Sci., 112 (11): 2312-2316.
22. Lacey, L. A., and Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol., 44: 218–225.
23. Rupp, S., Weber, R. W. S., Rieger, D., Detzel, P., & Hahn, M. 2017. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture. Front. Microbiol., 7: 2075.
24. SPSS Statistics for Windows Version 22.0, Armonk (NY): IBM Corporation, 2013.
25. Sosnik, A., and Seremeta, K. P. 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci., 223, 40–54.
26. Sun, X., Cameron, R. G., and Bai, J. 2019. Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll, 105420.
27. Williamson B., Tudzynski B., Tudzynski P. and van Kan J. A. L., 2007. Botrytis cinerea: The Cause of Grey Mould Disease, Mol. Plant Pathol., 8 (5): 561-580.
28. Woo, M. W., and Bhandari, B. 2013. Spray drying for food powder production. Handbook of Food Powders, 29–56.