Comparison of Powder and Liquid Forms of Antifungal Metabolites Produced by Xenorhabdus szentirmaii, the Symbionts of Entomopathogenic Nematodes, against Gray Mold Botrytis cinerea

Document Type : Original Research

Author
Department of Biology, Faculty of Arts and Sciences, Duzce University, 81620, Duzce, Turkey.
Abstract
Xenorhabdus spp. bacteria are known to produce antifungal compounds that are highly efficacious against important plant pathogens such as Botrytis cinera. Generally, centrifuged and filtered supernatant or growth cultures are used to test effects of secondary metabolites of Xenorhabdus bacteria against different phytopathogens. We hypothesized that turning the bacterial supernatant into powder will increase the antifungal effects of the bioactive metabolite. Therefore, as a first step, we investigated and compared the effects of powder and liquid forms of antifungal metabolites of X. szentirmaii against B. cinerea. The powdered form of the supernatant was obtained using spray drying technology. The different doses of the powdered supernatant and their liquid equivalents were compared via in vitro assays. Our data indicated that the antifungal activity of the liquid Xenorhabdus supernatant was stronger than the powdered form in in vitro assays. We posit that during the pulverization process, some of the antifungal compounds in cell-free supernatants were either degraded or evaporated as the supernatants were subjected to high processing temperatures and pressure of the spray drying process. It is also possible that the powdered form of the supernatant did not dissolve well in PDA, so, the antifungal compound had limited contact with the tested fungal pathogen. Future studies should extract and purify the bioactive compound/s present in the supernatants of these bacteria and test their efficacy in ppm doses as powdered forms of these compounds have longer shelf-life and can be easily formulated compared to liquid supernatants.

Keywords


1. Adlig, N. and Gulcu, B. 2019. Trans-Cinnamik Asit ve Xenorhabdus szentirmaii Metabolitlerinin Bitki Patojeni Fungus Botrytis cinerea Mücadelesinde Kullanımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7: 2000-2008.
2. Akhurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol., 121: 303–309.
3. Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., & Dabur, R. 2009. Natural products – antifungal agents derived from plants. J Asian Nat. Prod. Res., 11(7), 621 -638.
4. Bock, C. H., Shapiro-Ilan, D. I., Wedge, D., & Cantrell, C. H. 2014. Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide. J. Pest Sci., 87: 155–162.
5. Bode, H. B. 2009. Entomopathogenic bacteria as a source of secondary metabolites, Curr. Opin. Chem. Biol., 13: 1–7.
6. Boemare, N. E., & Akhurst, R. J. 2006. The genera Photorhabdus and Xenorhabdus. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes (pp. 451–494). New York: Springer Science + Business Media Inc.
7. Boszormenyi, E., Ersek, T., Fodor, A., Fodor, A.M., Foldes, L. S.,Hevesi,M., Hogan, J. S., Katona, Z., Klein, M. G., Kormany, A., Pekar, S., Szentirmai, A., Sztaricskai, F., & Taylor, R. A. J. 2009. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J. App. Microbiol., 107: 764–759.
8. Chacón-Orozco, J. G., Bueno, C. Jr., Shapiro-Ilan, D. I., Hazir, S., Leite, L. G., Harakava, R. 2020. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. metabolites and volatiles on the soilborne plant pathogenic Sclerotinia sclerotiorum. Sci. Rep., 10: 20649.
9. Coleman, J. J., Ghosh, S., Okoli, I., Mylonakis, E. 2011 Antifungal Activity of Microbial Secondary Metabolites. PLoS ONE 6(9): e25321.
10. Correa-Filho, L. C., Lourenco, M. M., Moldao-Martins, M., & Alves, V. D. 2019. Microencapsulation of beta-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Int. J. Food Sci., 2019: 1-12.
11. Donmez, O. H., Cimen, H., Ulug, D., Wenski, S., Yigit, O. S., Telli, M., Aydin, N., Bode, H. B., Hazir, S. 2019. Nematode-Associated Bacteria: Production of Antimicrobial Agent as a Presumptive Nominee for Curing Endodontic Infections Caused by Enterococcus faecalis. Front. Microbiol., 10: 2672.
12. Dreyer, J., Malan, A. P., & Dicks, L. M. T. 2018. Bacteria of the Genus Xenorhabdus, a Novel Source of Bioactive Compounds. Front. Microbiol., 9: 3177.
13. Fang, X. L., Li, Z. Z., Wang, Y. H., & Zhang, X. 2011. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J. App. Microbiol., 111(1): 145–154.
14. Fang, X., Zhang, M., Tang, Q., Wang, Y., & Zhang, X. 2014. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta. Sci. Rep., 4: 1–7.
15. Griffin, C. T., Boemare, N. E. and Lewis, E. E., 2005. Biology and behavior, Nematodes as biocontrol agents, Wallingford, UK: CABI Publishing, pp. 47–64.
16. Haggag, W. M. and Mohamed, H. A. A. 2007. Biotechnological Aspects of Microorganisms Used in Plant Biological Control. American-Eurasian Journal of Sustainable Agriculture, 1(1): 7-12.
17. Hazir, S., Shapiro-Ilan, D. I., Bock, C. H., Hazır, C., Leite, L. G., and Hotchkiss, M.W. 2016. Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens, Eur. J. Plant Pathol., 146: 369–381.
18. Hazir, S., Shapiro-Ilan, D. I., Bock, C., Leite, L. 2018. Thermo-stability, dose effects and shelf-life of antifungal metabolite-containing supernatants produced by Xenorhabdus szentirmaii. Eur. J. Plant Pathol., 150: 297-306.
19. Keller, N. P., Turner, G., Bennett, J. W. 2005. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol., 3: 937-47.
20. Koca, N., Erbay, Z., & Kaymak-Ertekin, F. 2015. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. J. Dairy Sci., 98(5), 2934–2943.
21. Kulkarni, R. A., Prabhuraj, A., Ashoka, J., Hanchinal, S. G. and Hiregoudar, S. 2017. Generation and evaluation of nanoparticles of supernatant of Photorhabdus luminescens (Thomas and Poinar) against mite and aphid pests of cotton for enhanced efficacy. Curr. Sci., 112 (11): 2312-2316.
22. Lacey, L. A., and Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol., 44: 218–225.
23. Rupp, S., Weber, R. W. S., Rieger, D., Detzel, P., & Hahn, M. 2017. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture. Front. Microbiol., 7: 2075.
24. SPSS Statistics for Windows Version 22.0, Armonk (NY): IBM Corporation, 2013.
25. Sosnik, A., and Seremeta, K. P. 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci., 223, 40–54.
26. Sun, X., Cameron, R. G., and Bai, J. 2019. Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol. Food Hydrocoll, 105420.
27. Williamson B., Tudzynski B., Tudzynski P. and van Kan J. A. L., 2007. Botrytis cinerea: The Cause of Grey Mould Disease, Mol. Plant Pathol., 8 (5): 561-580.
28. Woo, M. W., and Bhandari, B. 2013. Spray drying for food powder production. Handbook of Food Powders, 29–56.