Analysis of Salt Stress-Responsive Transcriptome in Barley Root (Hordeum vulgare L.)

Document Type : Original Research

Authors
1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Islamic Republic of Iran.
2 Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran.
Abstract
Salinity stress is one of the most important environmental stresses that decrease crop growth and yield. Barley is an important crop known as the salt-tolerant plant in cereals. In this study, the salt stress-responsive root transcriptome of tolerant (Afzal) and susceptible (Yusef) cultivars was investigated. The sequencing of mRNA transcripts (termed RNA-Seq) was performed using the Illumina HiSeq platform after filtering for RNA with 3' polyadenylated tails to include only mRNA. The Tuxedo pipeline was used to identify the altered expression of transcripts. Sequencing results showed that, after initial trimming of the reads, more than 20 million reads (92%) remained for all samples, of which 88% were aligned with the barley genome. Bioinformatics analysis showed the altered genes expressions in various processes such as membrane antiporter and transporter activity, an antioxidant, wide range of kinase and phosphatase cascades, internal signal transduction, metabolism of carbohydrates, amino acids, and lipids, binding processes, response to plant hormones, catalytic activity, and cell wall organization. Gene network analysis revealed that key genes, including proteins involved in systemic acquired resistance, peroxidase family proteins, cyclin-dependent protein kinase, phosphatidylinositol kinase, auxin-carrying proteins, mannose 6 phosphate isomerase, helicases and transcription factors play an important role in salt tolerance. These data can be used as a valuable source in future studies for genetic manipulation of barley and development of salinity tolerant cultivars.

Keywords

Subjects


1. Ahmed, I.M., Nadira, U.A., Bibi, N., Cao, F., He, X., Zhang, G. and Wu, F. 2015. Secondary Metabolism and Antioxidants are Involved in the Tolerance to Drought and Salinity, Separately and Combined, in Tibetan Wild Barley. Environ. Exp. Bot., 111: 1-12.
2. Ashraf, M. and Foolad, M.R. 2013. Crop Breeding for Salt Tolerance in the Era of Molecular Markers and Marker‐Assisted Selection. Plant Breed., 132 (1): 10-20.
3. Bahieldin, A., Atef, A., Sabir, J.S., Gadalla, N.O., Edris, S., Alzohairy, A.M. and Hassan, S.M. 2015. RNA-Seq Analysis of the Wild Barley (H. spontaneum) Leaf Transcriptome under Salt Stress. C. R. Biol., 338 (5): 285-297.
4. Bolger, A.M., Lohse, M. and Usadel, B. 2014. Trimmomatic: a Flexible Trimmer for Illumina Sequence Data. Bioinformatics., 30 (15): 2114-2120.
5. Brown, T.A. 2018. Genomes 4. Garland Science. Czech. J. Genet. Plant. Breed., 53: 76-84.
6. Fleige, S. and Pfaffl, M.W. 2006. RNA Integrity and the Effect on the Real-Time qRT-PCR Performance. Mol. Aspects Med., 27 (2-3): 126-139.
7. Fleige, S., Walf, V., Huch, S., Prgomet, C., Sehm, J. and Pfaffl, M.W. 2006. Comparison of Relative mRNA Quantification Models and the Impact of RNA Integrity in Quantitative Real-Time RT-PCR. Biotechnol. Lett., 28 (19): 1601-1613.
8. Golldack, D., Li, C., Mohan, H. and Probst, N. 2014. Tolerance to Drought and Salt Stress in Plants: Unraveling the Signaling Networks. Front. Plant Sci., 5: 151.
9. Gozukirmizi, N. and Karlik, E. 2017. Barley (Hordeum vulgare L.) Improvement Past, Present and Future. Brewing Tech., 49-78.
10. Hiremath, P.J., Farmer, A., Cannon, S.B., Woodward, J., Kudapa, H., Tuteja, R. and Krishnamurthy, L. 2011. Large‐Scale Transcriptome Analysis in Chickpea (Cicer arietinum L.), an Orphan Legume Crop of the Semi‐Arid Tropics of Asia and Africa. Plant Biotechnol. J., 9 (8): 922-931.
11. Hoagland, D.R. and Arnon, D.I. 1950. The Water-Culture Method for Growing Plants Without Soil. Circular. Calif. Agric., 347 (2nd edit).
12. Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E. and Auffray, C. 2005. Towards Standardization of RNA Quality Assessment Using User-Independent Classifiers of Microcapillary Electrophoresis Traces. Nucleic Acids Res., 33 (6): e56-e56.
13. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S.L. 2013. TopHat2: Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions. Genome biol., 14 (4): R36.
14. Kumar, R., Khurana, A. and Sharma, A.K. 2013. Role of Plant Hormones and Their Interplay in Development and Ripening of Fleshy Fruits. J. exp. bot., 65 (16): 4561-4575.
15. Liu, Q. and Xue, Q. 2006. Computational Identification of Novel PR-1-type Genes in Oryza sativa. J. Genet., 85 (3): 193-198.
16. Liu, Y., Dang, P., Liu, L. and He, C. 2019. Cold Acclimation by the CBF–COR Pathway in a Changing Climate: Lessons from Arabidopsis thaliana. Plant cell rep., 38 (5): 511-519.
17. Manchanda, G. and Garg, N. 2008. Salinity and its Effects on the Functional Biology of Legumes. Acta Physiol. Plant., 30 (5): 595-618.
18. Mardis, E.R. 2008. The Impact of Next-Generation Sequencing Technology on Genetics. Trends genet., 24 (3): 133-141.
19. Marguerat, S. and Bähler, J. 2010. RNA-seq: from Technology to Biology. Cell. Mol. Life Sci., 67 (4): 569-579.
20. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. and Wold, B. 2008. Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq. Nature methods., 5 (7): 621-628.
21. Narimani, T., Toorchi, M., Tarinejad, A.R., Mohammadi, S.A. and Mohammadi, H. 2020. Physiological and Biochemical Evaluation of Barley (Hordeum vulgare L.) under Salinity Stress. J. Agr. Sci. Tech., 22 (4): 1009-1021.
22. Nirmala, J., Brueggeman, R., Maier, C., Clay, C., Rostoks, N., Kannangara, C.G. and Kleinhofs, A. 2006. Subcellular Localization and Functions of the Barley Stem Rust Resistance Receptor-Like Serine/Threonine-Specific Protein Kinase Rpg1. Proc. Natl. Acad. Sci., 103 (19): 7518-7523.
23. Parihar, P., Singh, S., Singh, R., Singh, V.P. and Prasad, S.M. 2015. Effect of Salinity Stress on Plants and Its Tolerance Strategies: A Review. Environ. Sci. Pollut. Res., 22 (6): 4056-4075.
24. Rivandi, J., Miyazaki, J., Hrmova, M., Pallotta, M., Tester, M. and Collins, N.C. 2011. A SOS3 Homologue Maps to HvNax4, A Barley Locus Controlling an Environmentally Sensitive Na+ Exclusion Trait. J. Exp. Bot., 62 (3): 1201-1216.
25. Sigdel, S., Singh, R., Kim, T.S., Li, J., Kim, S.Y., Kim, I.W. and Lee, J.K. 2015. Characterization of a Mannose-6-phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-phosphate Production. PLoS One., 10 (7): e0131585.
26. Sotiropoulos, T.E. 2007. Effect of NaCl and CaCl2 on Growth and Contents of Minerals, Chlorophyll, Proline and Sugars in the Apple Rootstock M4 Cultured In Vitro. Biol. Plant., 51 (1): 177-180.
27. Tester, M. and Davenport, R. 2003. Na+ Tolerance and Na+ Transport in Higher Plants. Ann. bot., 91 (5): 503-527.
28. Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z. and Su, Z. 2017. AgriGO v2. 0: A GO Analysis Toolkit for the Agricultural Community, 2017 update. Nucleic Acids Res., 45 (W1): W122-W129.
29. Vlk, D. and Řepková, J. 2017. Application of Next-Generation Sequencing in Plant Breeding. Czech. J. Genet. Plant. Breed., 53 (3): 89-96
30. Vogt, P.K., Hart, J.R., Gymnopoulos, M., Jiang, H., Kang, S., Bader, A. G. and Denley, A. 2010. Phosphatidylinositol 3-kinase: the Oncoprotein. In Phosphoinositide 3-kinase in Health and Disease. Springer, Berlin, Heidelberg. 79-104.
31. Wang, Z., Gerstein, M. and Snyder, M. 2009. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. rev. genet., 10 (1): 57-63.
32. Willenbrock, H., Salomon, J., Søkilde, R., Barken, K.B., Hansen, T.N., Nielsen, F.C. and Litman, T. 2009. Quantitative miRNA Expression Analysis: Comparing Microarrays with Next-Generation Sequencing. Rna., 15 (11): 2028-2034.
33. Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S. and Wei, L. 2011. KOBAS 2.0: A Web Server for Annotation and Identification of Enriched Pathways and Diseases. Nucleic Acids Res., 39 (2): W316-W322.
34. Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J.M. and Cui, D. 2008. Functional Characterization of a Wheat Plasma Membrane Na+/H+ Antiporter in Yeast. Arch. Biochem. Biophys., 473 (1): 8-15.
35. Yamaguchi, T. and Blumwald, E. 2005. Developing Salt-Tolerant Crop Plants: Challenges and Opportunities. Trends plant sci., 10 (12): 615-620.