Variation in Floral Morphology and Seed Production of Buffel and Rhodes Grass

Document Type : Original Research

Authors
1 Colombian Agricultural Research Corporation - Agrosavia, Motilonia Research Center, Km 5 via a Becerril, Agustín Codazzi - Cesar, Colombia.
2 Colombian Agricultural Research Corporation - Agrosavia, Nataima Research Center, Km 9 via Espinal, Chicoral - Tolima, Colombia.
3 Colombian Agricultural Research Corporation - Agrosavia, Turipaná Research Center, Km 13 via Montería, Cereté - Córdoba, Colombia.
4 National Institute of Agricultural Technology - INTA, La Rioja Agricultural Experiment Station. National Route N ° 38 Km 267 Height Paraje La Llanura CC 26 (5380) Chamical-La Rioja, Argentina.
Abstract
The use of diversity implies knowing characteristics and traits of interest in genetic resources. In forages, the ability to produce seeds is essential to the persistence of cultivars in livestock systems. To study the floral variability and seed yield, 17 genotypes of Chloris gayana Kunth and 14 genotypes of Cenchrus ciliaris L. were evaluated. These genotypes were characterized considering floral morphology and total seed yield parameters. A randomized complete block design with four replications was used. In C. gayana, accessions 7757, 6631, 981 and 7757 presented the highest (P< 0.05) Number of Inflorescences per Plant (NIP, 26.43), number of Spikes per Inflorescence (S/I, 10.73), Weight of Thousand Seeds (WTS, 0.52 g) and Total Seed Production (TSP, 235.69 kg ha-1), respectively. In C. ciliaris, accessions 15687 (28.67) and 1098 (24.33) presented the highest values (P< 0.05) for NIP. Accessions 777 (151.33) and 6642 (150.67) had the highest (P< 0.05) Number of Seeds by Inflorescences (NSI) and genotypes 6652 (0.238 g), 15687 (0.207 g), 16660 (0.215 g) had the highest (P< 0.05) Weight of one Hundred Seeds (WHS). Finally, accessions 6652 (210.93) and 1098 (188.55) had the highest (P< 0.05) TSP. The genotypes of C. gayana and C. ciliaris indicated an important morphology variation. Likewise, higher seed production, which is associated with genetic variability, can be an attribute to be considered during the selection of materials in forage breeding programs, as a complement to traditional evaluation characteristics.

Keywords

Subjects


Bashaw, E.C. 1985. Buffelgrass origins. E.C.A. Runge, J.L. Schuster (Eds.), Buffelgrass: Adaptation, Management, and Forage Quality. M.P. –1575, Texas Agricultural Experiment Station, College Station, Texas. pp. 6-8
Beltrán López, S., García Díaz, C. A., Loredo Osti, C., Urrutia Morales, J., Hernández Alatorre, J. A., & Gámez Vázquez, H. G. 2017. " Titán" y" Regio", variedades de pasto Buffel (Pennisetum ciliare)(L.) Link para zonas áridas y semiáridas. Rev Mex Cienc Pecu, 8(3), 291-295.
Bonney, S., Andersen, A., & Schlesinger, C. 2017. Biodiversity impacts of an invasive grass: Ant community responses to Cenchrus ciliaris in arid Australia. Biol. Invasions, 19(1), 57-72.
Boutsalis, P., Preston, C., & Gill, G. 2017. Growth, development, and seed biology of feather fingergrass (Chloris virgata) in Southern Australia. Weed Science, 65(3), 413-425.
Conde-Lozano, E., Martínez-González, J. C., Briones-Encinia, F., & Saldívar-Fitzmaurice, A. J. 2011. Producción de semilla de pasto Buffel (Cenchrus ciliaris L.) bajo diferentes ambientes agroecológicos en Tamaulipas, México. Rev.Fac.Agron. (LUZ), 28, 360-375.
Febles, G., Ruiz, T. E., & Baños, R. 2009. Efecto del clima en la producción de semillas de pastos tropicales de gramíneas. Revista Cubana de Ciencia Agrícola, 43(2), 105-112.
Hanselka, W., C., Hussey, M. A., & Fernando, I. F. 2004. Buffelgrass. Warm‐Season (C4) Grasses, 45, 477-502.
Imaz, J. A., Giménez, D. O., Grimoldi, A. A., & Striker, G. G. 2015. Ability to recover overrides the negative effects of flooding on growth of tropical grasses Chloris gayana and Panicum coloratum. Crop Pasture Sci., 66(1), 100-106. https://doi.org/10.1071/CP14172
Kumar, D., Dwivedi, G. K., & Singh, S. N. 2005. Seed yield and quality of buffel grass (Cenchrus ciliaris) as influenced by row spacing and fertilizer level. Trop. grassl., 39(2), 107-111.
Lázaro, A., & Larrinaga, A. R. 2018. A multi-level test of the seed number/size trade-off in two Scandinavian communities. PloS one, 13(7), e0201175.
Loch, D. S., Rethman, N. F., & Van Niekerk, W. A. 2004. Rhodesgrass. Warm‐Season (C4) Grasses, 45, 833-872.
Marinoni, L.R. 2017. Variabilidad en el peso de semillas del género Trichloris (Poaceae) en Argentina y su efecto en la respuesta al estrés hídrico y salino. Tesis DSc. Universidad Nacional del Litoral. 166 p.
Mansoor, U., Fatima, S., Hameed, M., Naseer, M., Ahmad, M. S. A., Ashraf, M., ... & Waseem, M. 2019. Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert. Flora, 261, 151485.
Mansoor, U., Naseer, M., Hameed, M., Riaz, A., Ashraf, M., Younis, A., & Ahmad, F. 2015. Root morpho-anatomical adaptations for drought tolerance in Cenchrus ciliaris L. ecotypes from the Cholistan desert. Phyton - Ann Rei Bot. 55 (1), 159-179.
Meena, S. S., & Nagar, R. P. (201. Seasonal effects on fodder yield and quality in Cenchrus species under semi-arid climate. Indian J. Agric. Sci., 89(8), 1287-1292.
Miller, G., Friedel, M., Adam, P., & Chewings, V. 2010. Ecological impacts of buffel grass (Cenchrus ciliaris L.) invasion in central Australia–does field evidence support a fire-invasion feedback. Rangel. J., 32(4), 353-365.
Pérez, A., & Suárez, J. (200. Producción comercial de semillas de rhodes Callide con fertilizantes orgánicos y minerales. Pastos y Forrajes, 24(4). 1-7
Peters, M., Franco, L. H., Schmidt, A. & Hincapie, B. 2011. Especies forrajeras multipropósito: Opciones para productores del Trópico Americano. CIAT, Cali, Colombia.
Ponsens, J., Hanson, J., Schellberg, J., & Moeseler, B. M. 2010. Characterization of phenotypic diversity, yield and response to drought stress in a collection of Rhodes grass (Chloris gayana Kunth) accessions. Field Crops Res., 118(1), 57-72.
Rajora, M. P.; Bhatt, R. K.; Jindal, S. K.; and Shantharaja, C. S. 2020. "Fodder Productivity of Different Genotypes of Cenchrus ciliaris under Hot Arid Climate of Thar Desert". International Grassland Congress Proceedings. 8. https://uknowledge.uky.edu/igc/23/4-1-3/8

Ribotta, A. N., Lopez Colomba, E., Bollati, G. P., Striker, G. G., Carloni, E. J., Griffa, S. M., ... & Grunberg, K. A. 2019. Agronomic and molecular characterization of Chloris gayana cultivars and salinity response during germination and early vegetative growth. Trop. grassl., 7(1), 14-24.
Roncallo, B., Sierra, A. M., & Castro, E. 2012. Rendimiento de forraje de gramíneas de corte y efecto sobre calidad composicional y producción de leche en el Caribe seco. Cienc. y Tecnol. Agropecu., 13(1), 71-78.
Sáenz-Flores, E., Saucedo-Terán, R. A., Morales-Nieto, C. R., Jurado-Guerra, P., Lara-Macías, C. R., Melgoza-Castillo, A., & Ortega-Gutiérrez, J. Á. 2015. Producción y calidad de semilla de pastos forrajeros como respuesta a la fertilización en Aldama, Chihuahua. Tecnociencia Chihuahua, 9(2), 111-119.
Shipley, B., & Dion, J. 1992. The allometry of seed production in herbaceous angiosperms. Am. Nat., 139(3), 467-483.
Volaire F. 2018. A unified framework for plant adaptive strategies to drought: across scales and disciplines. Glob Chang Biol., 00:1-10. https://doi.org/10.1111/gcb.14062
Wayne Hanselka, C., Hussey, M. A., & Fernando, I. F. 2004. Buffelgrass. Warm‐Season (C4) Grasses, 45, 477-502.