Abbasi, F.M. and Komatsu, S. 2004. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteom 4:2072–2081.
Abdul Qados, A.M.S., 2009. Effect of arginine on growth, yield and chemical constituents of wheat grown under salinity condition. Academic J of Plant Sci 2(4): 267-278.
Bahmani, K., Noori, S.A.S., Darbandi, A.I. and Akbari, A. 2015. Molecular mechanism of plant salinity tolerance: a review. Aust J Crop Sci 9: 321-336.
Batool, N., Shahzad, A., Ilyas, N. and Noor, T. 2014. Plants and salt stress. Int. J. Agri. Crop Sci. 7: 582-589.
Baxter, G., Zhao, J. and Blanchard, C. 2011. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour. J Sci Food Agric 91(12): 2292–2297.
Bradford, M.A., 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248.
Bray, E.A., 1997. Plant responses to water deficit. Trends in Plant Sci 2: 48-54.
Callis, J., 1995. Regulation of protein degradation. Plant Cell 7: 845-857.
Datir, S., Kulkarni, B. and Patil, N. 2018. Differential responses of rice (Oryza sativa L.) cultivars to NaCl in relation to physiological and biochemical parameters at seedling stage. Acta Sci Agric 2.2: 02-07.
Dooki, A., Mayer-Posner, F., Askari, H., Zaiee, A. and Salekdeh, G.H. 2006. Proteomic responses of rice young panicles to salinity. Proteom 6: 6498-507.
Dubey, R.S. and Singh, A.K. 1999. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol. Plant 42: 233-239.
Fernando, D. and Francisco, J.C. 1996. Characterization of the endoproteases appearing during wheat grain development. Plant Physiol112: 1211-1217.
Fukuda, A., Nakamura, A., Hara, N., Toki, S. and Tanaka, Y. 2011. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233 ; 175–188. doi ;10.1007/s00425-010-1289-4
Ghassemi-Golezani, K., Taifeh-Noori, M., Oustan, S. and Moghaddam, M. 2009. Responses of soybean cultivars to salinity stress. J Food Agric Environ 7: 401-404.
Hasegawa, P.M., Bressan, R.A., Zhu, JK. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Plant Mol Biol 51: 463-499.
Hossain, H., Rahman, M.A., Alam, M.S. and Singh, R.K. 2015. Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice J Agron Crop Sci 201 (1):17-31
Huang, M., Chen, J., Cao, F., Tao, Z., Lei, T., Tian, A., et al. 2019. Quantifying accumulation characteristics of glutelin and prolamin in rice grains. PLoS ONE 14(7): e0220139. https://doi.org/10.1371/journal.pone.0220139
Hussain, S., Zhang, J.H., Zhong, C., Zhu, L.F., Cao, X.C., Y.u., S.M., . . . Jin, Q.Y. 2017. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. J Integ Agric 16(11): 2357–2374.
Islam, M.S., Hur, J.H. and Wang, M.H. 2008. The influence of abiotic stresses on expression of zinc finger protein gene in rice. Russian J Plant Physiol 56: 695-701.
Juliano, B.O., 1993. Rice in human nutrition. Published with the collaboration of the international rice research institute food and agriculture organization of the united nations, Rome.
Juliano, B.O. and Boulter, D. 1976. Extraction and composition of rice endosperm glutelin.
Phytochem 15: 1601–1606.
Kawakatsu, T., Hirose, S., Yasuda, H. and Takaiwa, F. 2010. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154:1842–1854
Kawakatsu, T., Yamamoto, M.P., Hirose, S., Yano, M. and Takaiwa, F. 2008. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59:4233–4245
Khush, G.S., 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34.
Kim, W.T., Li, X. and Okita, T.W. 1993. Expression of storage protein multigene families in developing rice endosperm. Plant Cell Physiol 34: 595 - 603.
Kong-Ngern, K., Daduang, S., Wongkham, C., Bunnag, S., Kosittrakuna, M. and Theerakulpisuta, P. 2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings Sci. Asia 31: 403-408.
Kordrostami, M., Rabiei, M. and Kumleh, H.H. 2017. Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23:529–544.
Krishnan, H. B. and White, J. A. 1995. Morphometric analysis of rice seed protein bodies. Plant
Physiol 109: 1491–1495.
Kumar, A., Agarwal, S., Kumar, P. and Singh, A. 2010. Effects of salinity on leaf and grain protein in some genotypes of Oat (Avena sativa L.). Recent Res Sci Tech 2(6): 85-87.
Kumar, V., Singh, A., Amitha Mithra, S.V., Krishnamurthy, S.L., Parida, S.K., Jain, S., Tiwari, K.K., Kumar, P., Rao, A.R., Sharma, S.K., Khurana, J.P., Singh, N.K. and Mohapatra, T. 2015. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22:133–145.doi: 10.1093/dnares/dsu046.
Kumar, Y., Singh, A. and Matta, N.K. 2017. Proteomics of barley grains under varying salinity levels. J Prote Proteom 8: 49-63.
Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.227:680–8.
Li, X. and Okita, T.W. 1993. Accumulation of prolamins and glutelins during rice seed development: A quantitative evaluation. Plant Cell Physiol 34: 385-390.
Liu, Y., Wang, B., Li, J., et al. 2017. Salt response analysis in two rice cultivars at seedling stage. Acta Physiol Plant 39(10): doi:10.1007/s11738-017-2514-6
Luthe, D.S. 1983. Storage protein accumulation in developing rice (Oryza sativa L.) seeds. Plant Sci Lett 32: 147-158.
Lutts, S., Kinet, J.M. and Bouharmont, J. 1996. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. J Plant Physiol 149:186-195.
Maggio, A., Barbieri, G., Raimondi, G. and DePascale, S. 2010. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J. Plant Growth Regul 29: 63–72.
Miernyk, J.A. and Johnston, M.L. 2013. Proteomic analysis of the testa from developing soybean seeds. J Proteom 89: 265-272.
Mitsuhashi, W. and Oaks, A. 1994. Development of endopeptidase activities in maize (Zea mays L.) endosperms Plant Physiol 104 (2): 401-407. doi: 10.1104/pp.104.2.401
Momayezi MR, Zaharah AR, Hanafi MM, Mohd Razi I (2009) Agronomic characteristics and proline accumulation of Iranian rice genotypes at early seedling stage under sodium salts stress. Malaysian J Soil Sci 13: 59-75.
Morita, R., Kusaba, M., Iida, S., Nishio, T. and Nishimura, M. 2009. Development of PCR markers to detect the glb1 and Lgc1 mutations for the production of low easy-to-digest protein rice varieties. Theor Appl Genet 19: 125-30. 10.1007/s00122-009-1022-5.
Murumkar, C.V. and Chavan, P.D. 1986. Influence of salt stress on biochemical processes in chickpea ( Cicer arietinum L.). Plant and soil 96 (3): 439-443.
Nishimura, M., Kusaba, M., Miyahara, K., Nishio, T., Iida, S., Imbe, T. and Sato, H. 2005. New rice varieties with low levels of easy-to-digest protein, ‘LGC-Katsu’ and ‘LGC-Jun’. Breed Sci 55: 103-105.
Nohzadeh Malakshah, S., Habibi Rezaei, M., Heidari, M. and Salekdeh, G.H. 2007. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71(9):2144-54.
Ogawa, M., Kumamaru, T., Satoh, H., Iwata, N., Omura, T., Kasai, Z. and Tanaka, K. 1987. Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol 28:1517–1527.
Peach, K. and Tracey, M.V. 1956. Modern methods of plant analysis, vol. 1. Berlin,
Gottingen,Heldelberg: Springer Verlag.
Ren, Y., Wang, Y., Liu, F., Zhou, K., Ding, Y., Zhou, F., et al 2014. Glutelin precursor accumulation encodes a regulator of post-golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant cell 26: 410–425. doi: 10.1105/tpc.113.121376
Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., et al. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet 37:1141–6.
Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory Staff, Agriculture Handbook No. 60. USDA, Washington.
Sahi, C., Singh, A., Kumar, K., Blumwald, E. and Grover, A. 2006. Salt stress response in Rice: genetics, molecular biology, and comparative genomics. Funct Integr Genom 6: 263-284.
Sairam, R.K. and Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86: 407-421.
Sangwongchai, W. and Thitisaksakul, M. 2019. The effect of salt stress on productivity, grain morphology, grain carbohydrate and storage protein accumulations of 4 rice (Oryza sativa L.) cultivars differing in degrees of salt tolerance. In: 20th NRGC Proceedings.
Schaeffer, G.W. and Sharpe, F.T. 1990. Modification of amino acid composition of endosperm proteins from in vitro selected high lysine mutants in rice. Theor App Genet 80:841–6.
Shewry, P.R., 2007. Improving the protein content and composition of cereal grain. J Cereal Sci 46 : 239-250.
Shewry, P.R. and Halford, N.G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53 (370): 947-958.
Shewry, P.R., Tatham, A.S., Barro, F., Barcelo, P. and Lazzeri, P. 1995. Biotechnology of breadmaking: unravelling and manipulating the multi-protein gluten complex. BioTechn 13: 1185-1190.
Shinozaki, K. and Yamaguchi-Shinozaki, K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327-334.
Singh, A., 2016. Varied responses and tolerant mechanisms towards salinity stress in plants. Int J Plant Soil Sci 11(5): 1-13.
Singh, A. and Matta, N.K. 2011. Disulphide linkages occur in many polypeptides of rice protein fractions: a two- dimensional gel electrophoretic study. Rice Sci 18:86–94.
Soliman, M.S., Shalabi, H.G. and Campbell, W.F. 1994. Interaction of salinity, nitrogen, and phosphorus fertilization on wheat. J Plant Nutr 17:1163–1173
Tanaka, K., Sugimato, T., Ogawa, M. and Kasai, Z. 1980. Isolation and characterization of two types of protein bodies in the rice endosperm. Agric Biol Chem 44:1633-1639.
Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P. and McDonald, G.K. 2011. Additive effects of Na+ and Cl– ions on barley growth under salinity stress. J. Exp. Bot 62(6): 2189-2203.
Thomashow, M.F., 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571-599.
van Vliet, S., Burd, N.A. and van Loon, L.J. 2015. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J Nutr 145(9):1981–1991.
Wang, W., Vincour, B. and Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1-14.
Wing, R.A., Purugganan, M.D. and Zhang, Q. 2018. The rice genome revolution: from an ancient grain to green super rice. Nat Rev Genet 19: 505–517. doi: 10.1038/s41576-018-0024-z
Xu, H., Gao, Y. and Wang, J. 2012. Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq. Techniq PLoS ONE 7: e-30646.
Yamagata, H., Sugimoto, T., Tanaka, K. and Kasai, Z. 1982. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70: 1094-1100.
Zhang, H., He, D., Yu, J.L., Li, M., Damaris, R.N., Gupta, R., et al. 2016. Analysis of dynamic protein carbonylation in rice embryo during germination through AP-SWATH. Proteom 16: 989–1000. doi: 10.1002/pmic.201500248.
Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273.
Zhu, T., Budworth, P., Chen, W., Provart, N., Chang, H., Guimil, S., Su, W., Estes, B., Zou, G. and Wang, X. 2003. Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotech. J 1: 59-70.