1- Abad, J. D., and Rhoalds, B. L. 2008. Flow Structure at Different Stages in a Meander-Bend with Bendway Weirs; J. of Hydraul. Eng., 134 (8): 1052-1063.
2- Ahmadi, M. M., Ayyoubzadeh, S. A., Montazeri Namin, M. and Mohammad Vali Samani, J. 2009. A 2D Numerical Depth-averaged Model for Unsteady Flow in Open Channel Bends. Journal of Agricultural Science and Technology, 11: 457-468.
3- Bahrami Yarahmadi, M. and Shafai Bajestan, M. 2016. Sediment management and flow pat-terns at river bend due to triangular vanes attached to the bank. Journal of Hydro-environment Research, 10: 64–75.
4- Barnes, M. P. and Baldock, T. E. 2006. Bed Shear Stress Measurements in Dam Break and Swash Flows. International Conference on Civil and Environmental Engineering.
5- Bhuiyan, F., Hey, R. D. and Wormleaton, P. R. 2007. River restoration using W-weir. Journal of Hydraulic Engineering, 133 (6): 596–609.
6- Bhuiyan, F., Hey, R. D. and Wormleaton, P. R. 2009. Effects of vanes and weirs on sediment transport in meandering channels. Journal of Hydraulic Engineering, 135 (5): 339–349.
7- Bhuiyan, F., Hey, R. D. and Wormleaton, P. R. 2010. Bank-Attached Vanes for Bank Erosion Control and Restoration of River Meanders. Journal of Hydraulic Engineering, 136 (9): 583-596.
8- Carling, P. A., Kohmann, F., and Gols, E. 1996. River Hydraulics, Sediment Transport and Training Works: Their Ecological Relevance to European Rivers, Archiv. Hydrobiol. Supple., 113 (10): 129-146.
9- Copeland, R. R. 1983. Bank Protection Techniques using Spur Dikes. Hydraulics Laboratory, U. S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.
10- Cunningham, R. and Lyn, D. 2016. Laboratory Study of Bendway Weirs as a Bank Erosion Countermeasure. Journal of Hydraulic Engineering, https://doi:10.1061/(ASCE)HY.1943-7900.0001117, 04016004.
11- Davinroy, R. D., Rapp, R. J., and Myhre, R. E. 1998. Hydroacoustic study of fishes in bendway weir fields of the Middle Mississippi River. Proc., Wetlands Engineering and River Restoration Conf., ASCE, Reston, Va., 890–895.
12- Derrick, D. L. 1996. The bendway weir: An in-stream erosion control and habitat improve-ment structures for the 1990’s. Proc., XXVII Int. Conf. on Erosion Control Technology-Bringing Home, Erosion Control Association, Steamboat Springs, Colo., 227–241.
13- DHI, 1992. Hydraulic manual of mike 11 mode, a microcomputer based modelling system for rivers and channels. Danish Hydraulic Institute (DHI). Denmark.
14- Dietrich, W. E., Smith J. D. and Dunne, T. 1979. Flow and sediment transport in a sand bed-ded meander. Journal Geology, 87: 305-315. https://doi:10.1086/628419.
15- Duan, J. G. and Nanda, S. K. 2006. Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field. Journal of Hydrology, 327: 426– 437.
16- Dugue, V., Blanckaert, K., Chen, Q. and Schleiss, A.J. 2013. Reduction of bend scour with an air-bubble screen - morphology and flow patterns, Int. J. Sediment Research, 28 (1): 15–23.
17- Endreny, T. A. and Soulman, M. M. 2011. Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring, Hydrol. Earth Syst. Sci., 15: 2119-2126.
18- Hsieh, T.Y. and Yang, J.C. 2003. Investigation on the suitability of two–dimensional depth-averaged models for bend-flow simulation. Journal Hydraulic Engineering, ASCE, 129 (8): 597- 612.
19- Jarrahzade, F., and Shafai-Bejestan, M. 2011. Comparison of maximum scours depth in Bank line and nose of submerged weirs in a sharp bend. Scientific Research and Essays, 6 (5): 1071-1076.
20- Jia, Y., Scott S., Xu, Y., and Wang, S.S.Y. 2009. Numerical Study of Flow Affected by Bendway Weirs in Victoria Bendway, the Mississippi River. Journal of Hydraulic Engineer-ing, ASCE, 135 (11): 902-916.
21- Kassem, A. A. and Chaudhry, F. 2002. Numerical modelling of bed evolution in channel bends. ASCE, Journal Hydraulic Engineering, 128 (5): 507-514.
22- Kilanehei, F., Naeeni, S. T. O. and Namin, M. M. 2011. Coupling of 2DH-3D Hydrodynamic Numerical Models for Simulating Flow around River Hydraulic Structures. World Applied Sciences Journal, ISSN 1818-4952, 15 (1): 63-77.
23- Molls, Th. and Chaudhry, H. 1995. Depth-averaged open-channel flow model. ASCE, Jour-nal Hydraulic Engineering, 121 (6): 453-465.
24- Morshedi, J. and Alavi Panah, S. K. 2010. Change prediction of Karoon river lengths by us-ing historical and quantitative geomorphologic data (From Shoshtar to Arvandrod). Quarterly Geographical Journal of Territory, Islamic Azad University, Science and Research Branch. 6 (22): 43-58.
25-Nakagawa, H., Teraguchi, H., Kawaike, K., Baba, Y. and Zhang, H. 2011. Analysis of Bed Variation Around Bandal-like structures. Annual of Disaster Prevention Research Institute, Kyoto University, 54B: 497- 510.
26- Odgaard, A. J., and Spoljaric, A. 1986. Sediment control by submerged vanes. Journal of Hydraulic Engineering, 112 (12): 1164.
27- Odgaard, A. J., and Bergs, M. A. 1988. Flow Processes in a Curved Alluvial Channel. Water Resource Res, 24 (1): 45-56.
28- Odgaard, A. J., and Wang, Y. 1991. Sediment management with submerged vanes. I: Theo-ry. Journal of Hydraulic Engineering, 117 (3): 267–283.
29- Odgaard, A. J. 2009. River training and sediment management with submerged vanes. ASCE Press, 184p.
30- Pagliara, S. and Mahmoudi Kurdistani, S. 2013. Scour downstream of cross-vane structures, J. of Hydro-environment Res., 7 (12): 236–242.
31- Perdok, U. H. 2002. Application of timber groynes in coastal engineering. M.Sc. thesis. TU delft university of Technology.
32- Rahman, M. M., Nagata, N. and Muramoto, Y. 1999. Effect of Side Slope on Flow and Scouring Around Spur-Dike-Like Structures. River Sedimentation, 165-171.
33- Rahman, M. M., Nakagawa, H., Ishigaki, T. and Khaleduzzaman, A. T. M. 2003a. Channel Stabilization using bandalling. Annual of Disaster Prevention Research Institute, Kyoto Uni-versity, 46B: 613-618.
34- Rahman, M. M., Nakagawa, H., Khaleduzzaman, A. T. M. and Ishigaki, T. 2003b. Flow and scour-deposition around bandals. Proceeding Fifth International Summer Symposium, Japan Society of Civil Engineers, Tokyo, Japan.
35- Rahman, M. M., Nakagawa, H., Khaleduzzaman, A. T. M., and Ishigaki, T. 2005. Formation of the navigational channel using bandal-like structures. Annual Journal of Hydraulic Engi-neering, JSCE, 49: 997-1002.
36- Rahman, M. M., Nakagawa, H., Ito, N., Haque, A., Islam, T., Rahman, M. R., and Hoque, M. M. 2006. Prediction of local scour depth around Bandal-like structures. Annual Journal of Hydraulic Engineering, JSCE, 50: 163-168.
37- Rozovskii, I. L. 1957. Flow of water in bends of open channels. Published by the academy of Sci. Ukrainian SSR, Kiev.
38- Sardasteh, A., Ayyoubzadeh, S. A., Shafai Bajestan, M. and Mohammad Vali Samani, J. 2017. Introduction of Winged Bandal-like Structure and Comparison of Bed Topography Changes to Bandal-like and impermeable spur dyke Structures at a 180-degree bend in non-submerged conditions. 16 the Iranian Hydraulic Conference, Ardabil, Iran.
39- Sardasteh, A. 2018. Experimental Study of the Sediment Management and Hydrodynamics of the Triangular-Winged Bandal-like Structure at 180 Degree Bend in Non-submerged Con-ditions. Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (P.H.D) in Water Structures Engineering. Tarbiat Modares University, Iran. 307 p.
40- Shields, F. D., Copeland, R. R., Klingeman, P. C., Doyle, M. W. and Simon, A. 2003. De-sign for Stream Restoration. Journal of Hydraulic Engineering, 129 (8): 575-584.
41- Shukry, A. 1950. Flow around Bends in an Open Flume. Transactions of the American Socie-ty of Civil Engineers, 115 (1): 751-779.
42- Smith, J.D. and Mclean, S.R. 1984. A model for flow in meandering streams. Water Re-sources Research, 20 (9): 1301-1315.
43- Teraguchi, H. 2011. Study on Hydraulic and Morphological Characteristics of River Channel. PhD Thesis, Kyoto University Research Information Repository, 146 p.
44- Teraguchi, H., Nakagawa, H., Kawaike, K., Baba, Y. and Zhang, H. 2011b. An alternative method for river training works Bandal-like structures. Annual Journal of Hydraulic Engineer-ing, Japan Society of Civil Engineers, 55: 151-156.
45- Wu, W. 2007. Computational River Dynamics. National Center for Computational Hydrosci-ence and Engineering, University of Mississippi, MS, USA. Published by: Taylor & Fran-cis/Balkema.
46- Zhang, H., Nakagawa, H., Ogura, M. and Mizutani, H. 2012. Bed morphology and grain size characteristics around a spur dyke. International Journal of Sediment Research, 27 (2): 141-157. https://doi: 10.1016/S1001-6279(12) 60023-7.
47- Zhang, H., Nakagawa, H., Ogura, M. and Mizutani, H. 2013. Experiment Study on Channel Bed Characteristics around Spur Dykes of Different Shapes. International Journal of Sedi-ment Research, 28: 489-499.