cDNA-AFLP Analysis of Plant Defense Genes Expressed in Wheat (cv. Chamran) Infected with Mycosphaerella graminicola

Authors
1 Department of Plant Pathology, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Islamic Republic of Iran
2 Department of Biotechnology, College of New Technology and Engineering, Shahid Beheshti University, Tehran, Islamic Republic of Iran
3 Department of Plant Pathology, Faculty of Agriculture, University of Tarbiat Modares, Tehran,Islamic Republic of Iran
4 Department of Plant Diseases Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO). Tehran, Islamic Republic of Iran.
Abstract
Differential induction of genes in wheat (cv. Chamran) in response to Mycosphaerella graminicola was studied using cDNA-AFLP analysis. The three weeks old wheat seedlings were inoculated by the fungal pathogen, then the samples were collected at six time points (0, 12, 24, 48, 72, 96 hours) after inoculation with pathogen. By comparing the expression patterns of induced (infected) with non-induced (uninfected) plants, 276 differentially expressed fragments were identified and sequenced. Blast search of wheat genes assigned these sequences to different functional categories including defense, metabolism, energy, transcription, transport, signal transduction, stress response, secondary metabolism, and unknown sequences. Eight defense-related genes including lipoxygenase, peroxidase (PR 9), chitinase (PR 2, 4, 8) , PR-1, thaumatin-like protein (PR5), Phenylalanine Ammonia Lyase (PAL), β-1-3 glucanase (PR3), disulfide isomerase, and methionine sulfoxide reductase were induced 12 to 24 hours after inoculation in this cultivar of wheat. Induction of glucosyltransferase, Catalase, and putative xylanase inhibitor genes were observed around 48 h after inoculation with pathogen. Expression patterns of the other three genes, i.e., chalcone synthase, EXECUTER 1 protein, and nonspecific lipid transfer protein showed that these genes were induced later after inoculation (72-96 hours). Our data showed that expression of the PR- proteins were enhanced 24 h after inoculation, suggesting that they may play a role in the defense against M. graminicola. Expression of lipoxygenase, glycosyltransferase, thaumatin like protein, putative xylanase inhibitor, EXECUTER 1 protein and Nonspecific lipid transfer protein are reported for the first time in this interaction.

Keywords

Subjects


1. Abrinbana, M., Mozafari, J., Shams-bakhsh, M. and Mehrabi, R. 2012. Resistance Spectra of Wheat Genotypes and Virulence Patterns of Mycosphaerella graminicola Isolates in Iran. Euphytica, 186(1): 75-90.
2. Adhikari, T., Balaji, B., Breeden, J., Anderson, J. and Goodwin, S. 2004. Quantification of Mycosphaerella graminicola in Wheat by Real-Time PCR. Phytopathol., 94(6): S2-S2.
3. Adhikari, T. B., Anderson, J. M. and Goodwin, S. B. 2003. Identification and Molecular Mapping of a Gene in Wheat Conferring Resistance to Mycosphaerella graminicola. Phytopathol., 93(9): 1158-1164.
4. Adhikari, T. B., Balaji, B., Breeden, J. and Goodwin, S. B. 2007. Resistance of Wheat to Mycosphaerella graminicola Involves Early and Late Peaks of Gene Expression. Physiol. Mol. Plant. P, 71(1-3): 55-68.
5. Akram, A., Ongena, M., Duby, F., Dommes, J. and Thonart, P. 2008. Systemic Resistance and Lipoxygenase-related Defence Response Induced in Tomato by Pseudomonas putida strain BTP1. BMC plant biology, 8: 113.
6. Anand, A., Zhou, T., Trick, H. N., Gill, B. S., Bockus, W. W. and Muthukrishnan, S. 2003. Greenhouse and Field Testing of Transgenic Wheat Plants Stably Expressing Genes for Thaumatin‐Like Protein, Chitinase and Glucanase against Fusarium graminearum. J. Exp. Bot, 54(384): 1101-1111.
7. Babitha, M., Prakash, H. and Shetty, H. 2006. Induction of Lipoxygenase in Downy Mildew Resistant Seedlings of Pearl Millet in Response to Inoculation with Sclerospora graminicola. Inter. J. Agri. Bio., 8(4): 560-564.
8. Bachem, C. W. B., Hoeven, R. S., Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. F. 1996. Visualization of Differential Gene Expression Using a Novel Method of RNA Fingerprinting Based on AFLP: Analysis of Gene Expression during Potato Tuber Development. Plant. J., 9(5): 745-753.
9. Breyne, P., Dreesen, R., Cannoot, B., Rombaut, D., Vandepoele, K., Rombauts, S., Vanderhaeghen, R., Inzé, D. and Zabeau, M. 2003. Quantitative cDNA-AFLP Analysis for Genome-Wide Expression Studies. Mol. Genet. Genom., 269(2): 173-179.
10. Cohen, L. and Eyal, Z. 1993. The Histology of Processes Associated with the Infection of Resistant and Susceptible Wheat Cultivars with Septoria tritici. Plant Pathol., 42(5): 737-743.
11. Duncan, K. E. and Howard, R. J. 2000. Cytological Analysis of Wheat Infection by the Leaf Blotch Pathogen( Mycosphaerella graminicola). Mycol. Res., 104(9): 1074-1082.
12. Durrant, W. E., Rowland, O., Piedras, P., Hammond-Kosack, K. E. and Jones, J. D. G. 2000. cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell Online, 12(6): 963-977.
13. Eyal, Z. 1981. Integrated Control of Septoria Diseases of Wheat. Plant Dis., 65(9): 763.
14. Eyal, Z., Scharen, A., Huffman, M. and Prescott, J. 1985. Global Insights into Virulence Frequencies of Mycosphaerella graminicola. Phytopathol., 75(12): 1456-1462.
15. Feussner, I. and Wasternack, C. 2002. The Lipoxygenase Pathway. Annu.Rev. Plant Biol., 53(1): 275-297.
16. Godfrey, D., Able, A. J. and Dry, I. B. 2007. Induction of a Grapevine Germin-Like Protein (VvGLP3) Gene Is Closely Linked to the Site of Erysiphe necator Infection: A Possible Role in Defense? Mol. Plant-Mic. Inter., 20(9): 1112-1125.
17. Goodwin, S., Williams, C., Ohm, H., Lohre, T. T., Crasta, O. and Anderson, J. 2003. Transcriptional Profiling of Defense Responses in Wheat. In: Abstracts of the Eighth Inter. Con. Plant. Pathol, Christchurch, New Zealand, 231 PP.
18. Lane, B. G. 2002. Oxalate, Germins, and Higher‐Plant Pathogens. IUBMB Life, 53(2): 67-75.
19. Manosalva, P. M., Davidson, R. M., Liu, B., Zhu, X., Hulbert, S. H., Leung, H. and Leach, J. H., 2009. A Germin-Like Protein Gene Family Functions as a Complex Quantitative Trait Locus Conferring Broad-Spectrum Disease Resistance in Rice. Plant Physiol., 149(1): 286-296.
20. Niderman,T., Genetet, I., Bruyère,T., Gees,R., Stintzi, A., Legrand, M., Fritig, B. and Mösinger, E., 1995. Pathogenesis-Related PR-1 Proteins Are Antifungal (Isolation and Characterization of Three 14-Kilodalton Proteins of Tomato and of a Basic PR-1 of Tobacco with Inhibitory Activity against Phytophthora infestans). Plant Physiol., 108(1): 17-27.
21. Polesani, M., Desario, F., Ferrarini, A., Zamboni, A., Pezzotti, M., Kortekamp, A. and Polverari,A. 2008. cDNA-AFLP Analysis of Plant and Pathogen Genes Expressed in Grapevine Infected with Plasmopara viticola. BMC Genom, 9(1): 142-156.
22. Quaedvlieg, W., Kema, G., Groenewald, J., Verkley, G., Seifbarghi, S., Razavi, M., Mirzadi Gohari,A., Mehrabi, R. and Crous, P.W., 2011. Zymoseptoria gen. nov.: A New Genus to Accommodate Septoria-Like Species Occurring on Graminicolous Hosts. Persoonia: Mol. Phylogen. Evo. Fun., 26(2): 57-69
23. Ray, S., Anderson, J. M., Urmeev, F. I. and Goodwin, S. B. 2003. Rapid Induction of a Protein Disulfide Isomerase and Defense-Related Genes in Wheat in Response to the Hemibiotrophic Fungal Pathogen Mycosphaerella graminicola. Plant. Mol. Biol., 53(5): 741-754.
24. Segarra, C. I., Casalongué, C. A., Pinedo, M. L., Ronchi, V. P. and Conde, R. D. 2003. A Germin‐Like Protein of Wheat Leaf Apoplast Inhibits Serine Proteases. J. Exp. Bot., 54(386): 1335-1341.
25. Shah, J. 2005. Lipids, Lipases, and Lipid-Modifying Enzymes in Plant Disease Resistance. Annu. Rev. Phytopathol., 43(1): 229-260.
26. Sharma, N., Sharma, K., Gaur, R. and Gupta, V. 2011. Role of Chitinase in Plant Defense. Asian J. Biochem., 6(1): 29-37.
27. Shetty, N., Kristensen, B., Newman, M. A., Møller, K., Gregersen, P. and Jørgensen, H. J. L. 2003. Association of Hydrogen Peroxide with Restriction of Septoria tritici in Resistant Wheat. Physio. Mol. Plant. Pathol., 62(6): 333-346.
28. Shetty, N. P., Jensen, J. D., Knudsen, A., Finnie, C., Geshi, N., Blennow, A., Collinge, D.B. and Jørgensen, H. J. L., 2009. Effects of β-1,3-Glucan from Septoria tritici on Structural Defence Responses in Wheat. J. Exp. Bot, 60(15): 4287-4300.
29. Somasco, O., Qualset, C. and Gilchrist, D. 1996. Single‐Gene Resistance to Septoria tritici Blotch in the Spring Wheat Cultivar ‘Tadinia’. Plant Breed., 115(4): 261-267.
30. Stevens, C., Titarenko, E., Hargreaves, J. A. and Gurr, S. J. 1996. Defence-Related Gene Activation during an Incompatible Interaction between Stagonospora (Septoria) nodorum and Barley (Hordeum vulgare L.) Coleoptile Cells. Plant. Mol. Biol. ,31(4): 741-749.
31. Tabib Ghaffary, S. M., Robert, O., Laurent, V., Lonnet, P., Margalé, E., van der Lee, T. A. J., Visser, R. G. F. and Kema, G. H. J., 2011. Genetic Analysis of Resistance to Septoria tritici Blotch in the French Winter Wheat Cultivars Balance and Apache. TAG Theor. Appl. Genet., 741-754.
32. Thompson, C. E., Fernandes, C. L., de Souza, O. N., Salzano, F. M., Bonatto, S. L. and Freitas, L. B. 2006. Molecular Modeling of Pathogenesis-Related Proteins of Family 5. Cell. Biochem. Bioph., 44(3): 385-394.
33. Tuzun, S., Bent, E. and Agrawal, A. 1999. The Role of Hydrolytic Enzymes in Multigenic and Microbially-Induced Resistance in Plants. "Induced Plant Defenses against Pathogens and Herbivores". Biochem. Ecol. Agri., VOL?? 95-115.
34. Van Loon, L. and Van Strien, E. 1999. The Families of Pathogenesis-Related Proteins, Their Activities, and Comparative Analysis of PR-1 Type Proteins. Physiol. Mol. Plant. Pathol., 55(2): 85-97.
35. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J. and Kuiper, M., 1995. AFLP: A New Technique for DNA Fingerprinting. Nucleic Acids Res., 23(21): 4407-4414.
36. Weiberg, A., Pöhler, D., Morgenstern, B. and Karlovsky, P. 2008. Improved Coverage of cDNA-AFLP by Sequential Digestion of
37. Immobilized cDNA. BMC Genom., 9(1): 480-495.
38. Wu, M. 2010. Development of a Simple and Powerful Method, cDNA AFLP-SSPAG, for Cloning of Differentially Expressed Genes. Afr. J. Biotechnol., 5(24): 2423-2427.
39. Yin, J., Wang, G., Xiao, J., Ma, F., Zhang, H., Sun, Y., Diao, Y., Huang, J., Guo, Q. and Liu, D. 2010. Identification of Genes Involved in Stem Rust Resistance from Wheat Mutant D51 with the cDNA-AFLP Technique. Mol. Biol. Rep., 37(2): 1111-1117.
40. Zhang, L., Meakin, H. and Dickinson, M. 2003. Isolation of Genes Expressed during Compatible Interactions between Leaf Rust (Puccinia triticina) and Wheat Using cDNA‐AFLP. Mol. Plant. Pathol., 4(6): 469-477.
41. Zhao, J., Zuo, K., Wang, J., Cao, Y., Zhang, L. and Tang, K. 2003. cDNA Cloning and Characterization of a Cotton Peptide Methionine Sulfoxide Reductase (cMsrA). Mitochondrial DNA, 14(4): 303-310.