Sublethal Effects of Commonly Used Insecticides in Tomato Crop on Functional Response and Biological Parameters of Macrolophus pygmaeus Rumber (Hemiptera: Miridae)

Document Type : Original Research

Authors
Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Islamic Republic of Iran.
Abstract
The hemipteran, Macrolophus pygmaeus Rumber, is an effective biocontrol agent against many crop pests including tomato leaf miner, Tuta absoluta Meyrick. Sublethal effects of azadirachtin (Neem Azal®), indoxacarb (Avaunt®), and emamectin benzoate+lufenuron (Proclim Fit®) were studied on biological characteristics and functional response of the predatory bug in laboratory conditions at 25±1°C, 6 ±5% RH, and a photoperiod of 16:8 hour (L:D). For this purpose, females of the predatory bug were exposed to sublethal residues (10% of field concentration) of the insecticides. Two-sex life table and Roger's model were used to investigate effects of the insecticides on biological parameters and functional response of the predator, respectively. Results indicated that sublethal residues of indoxacarb and azadirachtin had the highest and lowest side effects on life table parameters of M. pygmaeus. Whereas azadirachtin has no significant effects on the bug biological parameters, total fecundity and longevity of the bug in indoxacarb treatment were significantly lower (14.6%) and higher (6.9%) than the control. The predator showed type III functional response. The type of functional response was not affected by the insecticide residues. However, the coefficient of attack rate (b) for the indoxacarb treatment (0.1521) was significantly lower than for other treatments. However, there was no significant difference between the handling Times (Th) of the treatments. In conclusion, the experiments proved that azadirachtin is a low risk insecticide to M. pygmaeus, which can be integrated with biological control by the predator.

Keywords

Subjects


Angeli, G.I.N.O., Baldessari, M.A.R.I.O., Maines, R.O.M.A.N.O. and Duso, C. 2005. Side-effects of pesticides on the predatory bug Orius laevigatus (Heteroptera: Anthocoridae) in the laboratory. Biocontr. Sci. Tech., 15(7), 745-754.
‏Arnó, J. and Gabarra, R. 2011. Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J. Pest Sci., 84(4), 513-520.‏
Arno, J., Gabarra, R., Estopa, M., Gorman, K., Peterschmitt, M., Bonato, O. and Albajes, R. 2009. Implementation of IPM programs in European greenhouse tomato production areas: Tools and constraints. UDL Editions and Publications, Lleida, Spain.
Biondi, A., Guedes, R. N. C., Wan, F. H. and Desneux, N. 2018. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Ann. Rev. Entomol., 63, 239-258.‏
Bompard, A., Jaworski,, C.C., Bearez, P. and Desneux, N. 2013. Sharing a predator: can an invasive alien pest affect the predation on a local pest?. Popul Ecol., 55(3), 433-440.
Bostanian, N.J. and Akalach, M. 2006. The effect of indoxacarb and five other insecticides on Phytoseiulus persimilis (Acari: Phytoseiidae), Amblyseius fallacis (Acari: Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera: Anthocoridae). Pest Manag. Sci., 62(4), 334-339.‏
Chi, H. 2017. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. (http://140.120.197.173/Ecology/Download/Twosex-MSChart.rar) (accessed 1 May 2017).
Chi, H. and Su, H.Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol., 35, 10–21.
Claver, M.A., Ravichandran, B., Khan, M.M. and Ambrose, D.P. 2003. Impact of cypermethrin on the functional response, predatory and mating behavior of a non-target potential biological control agent Acanthaspis pedestris (Stål)(Het., Reduviidae). J. Appl. Entomol., 127(1), 18-22.‏
Copping, L.G. and Menn, J.J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci., 56(8), 651-676.‏
Desneux, N., Decourtye, A. and Delpuech, J.M. 2007. The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol., 52, 81-106.
Goodman, D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat., 119, 803- 823
Gontijo, L.M., Celestino, D., Queiroz, O.S., Guedes, R.N.C. and Picanço, M.C. 2015. Impacts of azadirachtin and chlorantraniliprole on the developmental stages of pirate bug predators (Hemiptera: Anthocoridae) of the tomato pinworm Tuta absoluta (Lepidoptera: Gelechiidae). Fla Entomol, 98(1), 59-64.‏
Hassan, S.A., Bigler, F., Bogenschütz, H., Boller, E., Brun, J., Calis, J.N.M. and Helyer, N. 1994. Results of the sixth joint pesticide testing programme of the IOBC/WPRS-Working Group «Pesticides and Beneficial Organisms». Entomophaga, 39(1), 107-119.‏
He, Y., Zhao, J., Zheng, Y., Desneux, N. and Wu, K. 2012. Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicol., 21, 1291–1300.
Isman, M.B. 2017. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Indus. Crops Product., 110, 10-14.
Juliano, S.A. 2001. Non-linear curve fitting: predation and functional response curves. In Scheiner, S.M. and Gurevitch J. (Eds.) Design and analysis of ecological experiments. 2nd edition, Chapman and Hall, New York, USA. pp: 178–196.
Jaworski, C.C., Bompard, A., Genies, L., Amiens-Desneux, E. and Desneux, N. 2013. Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS One, 8(12), e82231.
Jaworski, C.C., Chailleux, A., Bearez, P. and Desneux, N. 2015. Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss. J. Pest Sci., 88(4), 793-803.
Li, D.X., Tian, J. and Shen, Z.R. 2006. Effects of pesticides on the functional response of predatory thrips, Scolothrips takahashii to Tetranychus viennensis. J. Appl. Entomol., 130, 314–322.
Lopez, J.A., Amor Parrilla, F., Bengochea Budia, P., Medina Velez, M.P., Budia Marigil, M.F. and Viñuela Sandoval, E. 2011. Toxicity of emamectin benzoate to adults of Nesidiocoris tenuis Reuter, Macrolophus pygmaeus (Rambur) and Diglyphus isaea Walker on tomato plants. Semi-field studies. Span J. Agri. Res., 9(2), 617-622.‏
Malaquias, J.B., Ramalho, F.S., Omoto, C., Godoy, W.A.C. and Silveira, R.F. 2014. Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J.E. Smith) on Bt cotton. Ecotoxicol., 23, 192–200.
Martinou, A.F., Seraphides, N. and Stavrinides, M.C. 2014. Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere, 96, 167-173.‏
Martinou, A.F. and Stavrinides, M.C. 2015. Effects of sublethal concentrations of insecticides on the functional response of two mirid generalist predators. PloS One, 10(12), e0144413.‏
Margaritopoulos, J.T., Tsitsipis, J.A. and Perdikis, D.C. 2003. Biological characteristics of the mirids Macrolophus costalis and Macrolophus pygmaeus preying on the tobacco form of Myzus persicae (Hemiptera: Aphididae). Bul. Entomol. Res., 93(1), 39-45.‏
Nazarpour, L., Yarahmadi, F., Saber, M. and Rajabpour, A. 2016. Short and long term effects of some bio-insecticides on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and its coexisting generalist predators in tomato fields. J. Crop Protect., 5(3), 331-342.
Pilar Marco, M., Pascual, N., Belles, X., Camps, F. and Messeguer, A. 1990. Ecdysteroid depletion by azadirachtin in Tenebrio molitor pupae. Pestic. Biochem. Physiol., 38, 60-65.
Rogers, D. 1972. Random search and insect population models. J. Anim. Ecol., 41, 369-383.
Sharifian, I., Sabahi, Q. and Bandani, A.R. 2017. Effect of some conventional insecticides on functional response parameters of Macrolophus pygmaeus (Hem.: Miridae) on Tuta absoluta (Lep.: Gelechiidae). Biharean Biol., 11(1), 10-14.
Smith, R.J. 1991. Integration of biological control agents with chemical pesticides. In Charudattan R. and Walker, H.L. (Eds.) Microbial control of weeds. Springer, Boston, USA. Pp. 189-208.‏
Sylla, S., Brévault, T., Diarra, K., Bearez, P. and Desneux, N. 2016. Life-History Traits of Macrolophus pygmaeus with Different Prey Foods.: PLoS One, 11(11), e0166610. https://doi.org/10.1371/journal.pone.0166610.
Tedeschi, R., Alma, A. and Tavella, L. 2001. Side‐effects of three neem (Azadirachta indica A. Juss) products on the predator Macrolophus caliginosus Wagner (Het., Miridae). J. Appl. Entomol., 125(7), 397-402.‏
Wing, K.D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M. and Schnee, M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protect., 19(8-10), 537-545.‏
Wright, D.J. and Verkerk, R.H. 1995. Integration of chemical and biological control systems for arthropods: evaluation in a multitrophic context. Pest Manag. Sci., 44(3), 207-218.
Yarahmadi, F., Mossadegh, M.S., Soleymannejadian, E., Saber, M. and Shishehbor, P. 2009. Assessment of acute toxicity of abamectin, spinosad and chlorpyrifos to Thrips tabaci Lindeman (Thysanoptera: Thripidae) on sweet pepper by using two bioassay techniques. Asian J. Biol. Sci., 2(3), 81-87.
Zappalà, L., Biondi, A., Alma, A., Al-Jboory, I.J., Arnò, J., Bayram, A., et al. 2013. Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J. Pest Sci., 86, 635–647.