The Crucial Role of the Endosymbiont Pantoea sp. in Morphology and Mating of the Pistachio Green Stink Bug, Brachynema germari (Hemiptera: Pentatomidae)

Document Type : Original Research

Authors
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
The pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae), is one of the most important pests of pistachio nuts in many pistachio-growing regions in Iran(Mehrnejad 2001; Bigham & Hosseininaveh 2010). This insect harbors a gammaproteobacterial symbiont, related to the genus Pantoea, in the numerous crypts of its posterior midgut, which is vertically transmitted by infection of the egg masses and orally acquired by newborn nymphs. In the present study, the effects of the symbiont on host morphology, emergence rates, and mating frequency of B. germari were explored. For this purpose, two symbiont elimination strategies, high temperature and egg surface sterilization, were used and their effects were compared. We found external morphological changes (e.g. abnormalities in notum and wings) as well as significantly fewer emergence rates (in all stages, except for the first instar) in the surface-sterilized and heat-treated insects compared with the controls. Also, the second, third, and fourth regions of the midgut exhibited remarkable morphological changes in the aposymbiotic insects compared with the controls. Besides, less mating frequency was observed in the aposymbiotic population compared with the control. Together, these results provided a close relationship between the bacterial symbiont and B. germari and suggested the importance of the symbiont for the morphogenesis, development, and reproduction of the insect host.

Keywords


Akman, L., Yamashita, A., Watanabe, H., Oshima, K., Shiba, T., Hattori, M. and Aksoy, S. 2002. Genome Sequence of the Endocellular Obligate Symbiont of Tsetse Flies, Wigglesworthia glossinidia. Nat. Genet., 32: 402–407.
Bagheri, F., Talebi, K. and Hosseininaveh, V. 2010. Cellular Energy Allocation of Pistachio Green Stink Bug, Brachynema germari Kol. (Hemiptera.: Pentatomidae) in Relation to Juvenoid Pyriproxyfen. African J. Biotechnol., 9: 5746–5753.
Bigham, M. and Hosseininaveh, V. 2010. Digestive Proteolytic Activity in the Pistachio Green Stink Bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). J. Asia. Pac. Entomol., 13: 221–227.
Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M. and Goffredi, S. K. 2014. Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front. Microbiol., 5: 1–15.
Brownlie, J. C. and Johnson, K. N. 2009. Symbiont-Mediated Protection in Insect Hosts. Cell, 17: 348–354.
Buchner, P. 1965. Endosymbiosis of Animals with Plant Microorganisms (New York: John Wiley).
Dedeine, F., Vavre, F., Fleury, F., Loppin, B., Hochberg, M. E. and Bouletreau, M. 2001. Removing Symbiotic Wolbachia bacteria Specifically Inhibits Oogenesis in a Parasitic Wasp. Proc. Natl. Acad. Sci. U. S. A., 98: 6247–6252.
Engel, P. and Moran, N. A. 2013. The Gut Microbiota of Insects - Diversity in Structure and Function. FEMS Microbiol. Rev., 37: 699–735.
Ershad, D. and Barkhordary, M. 1974. Host Range and Vectors of Nematospora coryli Peglion in Kerman of Iran. Iran. J. Plant Pathol., 10: 3439.
Frago, E., Dicke, M. and Godfray, H. C. J. 2012. Insect Symbionts as Hidden Players in Insect-Plant Interactions. Trends Ecol. Evol., 27: 705–711.
Fukatsu, T. and Hosokawa, T. 2002. Capsule-Transmitted Gut Symbiotic Bacterium of the Japanese Common Plataspid Stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol., 68: 389–396.
Futahashi, R., Tanaka, K., Tanahashi, M., Nikoh, N., Kikuchi, Y., Lee, B. L. and Fukatsu, T. 2013. Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont. PLoS One, 8.
Haine, E. R. 2008. Symbiont-Mediated Protection. Proc. R. Soc. B-Biological Sci., 275: 353–361.
Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. and Fukatsu, T. 2006. Strict Host-Symbiont Cospeciation and Reductive Genome Evolution in Insect Gut Bacteria. PLoS Biol., 4: 1841–1851.
Hosokawa, T., Kikuchi, Y., Shimada, M. and Fukatsu, T. 2008. Symbiont Acquisition Alters Behaviour of Stinkbug Nymphs. Biol. Lett., 4: 45–48.
Hosokawa, T., Hironaka, M., Mukai, H., Inadomi, K., Suzuki, N. and Fukatsu, T. 2012. Mothers Never Miss the Moment: A Fine-Tuned Mechanism for Vertical Symbiont Transmission in a Subsocial Insect. Anim. Behav., 83: 293–300.
Hosokawa, T., Hironaka, M., Inadomi, K., Mukai, H., Nikoh, N. and Fukatsu, T. 2013. Diverse Strategies for Vertical Symbiont Transmission among Subsocial Stinkbugs. PLoS One, 8: 4–11.
Kaiwa, N., Hosokawa, T., Nikoh, N., Tanahashi, M., Moriyama, M., Meng, X. Y., Maeda, T., Yamaguchi, K., Shigenobu, S., Ito, M., et al. 2014. Symbiont-Supplemented Maternal Investment Underpinning Host’s Ecological Adaptation. Curr. Biol., 24: 2465–2470.
Kashkouli, M., Fathipour, Y. and Mehrabadi, M. 2018. Potential Management Tactics for Pistachio Stink Bugs, Brachynema germari, Acrosternum heegeri and Acrosternum arabicum (Hemiptera : Pentatomidae): High Temperature and Chemical Surface Sterilants Leading to Symbiont Suppression. J. Econ. Entomol., 112: 244–254.
Kashkouli, M., Fathipour, Y. and Mehrabadi, M. 2019a. Habitat Visualization, Acquisition Features and Necessity of the Gammaproteobacterial Symbiont of Pistachio Stink Bug, Acrosternum heegeri (Hem .: Pentatomidae). Bull. Entomol. Res., 110: 22-33.
Kashkouli, M., Fathipour, Y. and Mehrabadi, M. 2019b. Heritable Gammaproteobacterial Symbiont Improves the Fitness of Brachynema germari Kolenati (Hemiptera : Pentatomidae). Environ. Entomol., 48: 1079–1087.
Kenyon, S. G. and Hunter, M. S. 2007. Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. J. Evol. Biol., 20: 707-716.
Kikuchi, Y., Hosokawa, T., Nikoh, N., Meng, X.-Y., Kamagata, Y. and Fukatsu, T. 2009. Host-Symbiont Co-Speciation and Reductive Genome Evolution in Gut Symbiotic Bacteria of Acanthosomatid Stinkbugs. BMC Biol., 7: 2.
Kikuchi, Y., Hosokawa, T. and Fukatsu, T. 2011. An Ancient but Promiscuous Host-Symbiont Association between Burkholderia Gut Symbionts and Their Heteropteran Hosts. ISME J., 5: 446–460.
Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K. and Fukatsu, T. 2012a. Symbiont-Mediated Insecticide Resistance. Proc. Natl. Acad. Sci. U. S. A., 109: 8618–8622.
Kikuchi, Y., Hosokawa, T., Nikoh, N. and Fukatsu, T. 2012b. Gut Symbiotic Bacteria in the Cabbage Bugs Eurydema rugosa and Eurydema dominulus (Heteroptera: Pentatomidae). Appl. Entomol. Zool., 47: 1–8.
Lee, J. B., Park, K.-E., Lee, S. A., Jang, S. H., Eo, H. J., Jang, H. A., Kim, C.-H., Ohbayashi, T., Matsuura, Y., Kikuchi, Y., et al. 2017. Gut Symbiotic Bacteria Stimulate Insect Growth and Egg Production by Modulating Hexamerin and Vitellogenin Gene Expression. Dev. Comp. Immunol., 69: 12–22.
Mehrnejad, M. R. 2001. The Current Status of Pistachio Pests in Iran. Cah. Options Méditerranéennes, 322: 315–322.
Moran, N. A., McCutcheon, J. P. and Nakabachi, A. 2008. Genomics and Evolution of Heritable Bacterial Symbionts. Annu. Rev. Genet., 42: 165–190.
Musolin, D. L., Tougou, D. and Fujisaki, K. 2010. Too Hot to Handle? Phenological and Life-History Responses to Simulated Climate Change of the Southern Green Stink Bug Nezara viridula (Heteroptera: Pentatomidae). Glob. Chang. Biol., 16: 73–87.
Narita, S., Kageyama, D., Nomura, M. and Fukatsu, T. 2007. Unexpected Mechanism of Symbiont-Induced Reversal of Insect Sex: Feminizing Wolbachia Continuously Acts on the Butterfly Eurema hecabe During Larval Development. Appl. Environ. Microbiol., 73: 4332–4341.
Nyholm, S. V and Mcfall-ngai, M. J. 2004. The Winnowing : Establishing the Squid – Vibrio Symbiosis. Nat. Rev. Microbiol., 2: 632–642.
Oishi, S., Moriyama, M., Koga, R. and Fukatsu, T. 2019. Morphogenesis and Development of Midgut Symbiotic Organ of the Stinkbug Plautia stali ( Hemiptera : Pentatomidae ). Zool. Lett., 5: 1–13.
Oldroyd, G. E. D. and Downie, J. A. 2008. Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annu. Rev. Plant Biol., 59: 519–546.
Raman, G. 1991. Symbiont Recognition and Subsequent Morphogenesis as Early Events in an Animal-Bacterial Mutualism. Science, 254: 1491–1494.
Rahimi-Kaldeh, S., Bandani, A. and Ashouri, A. 2019. Does Wolbachia Change Diapause and Energy Reserves of Trichogramma brassicae in Response to Light Wavelengths?. Journal of Agricultural Science and Technology, 21: 1173-1182.
Ramzi, S. and Hosseininaveh, V. 2010. Biochemical Characterization of Digestive α -Amylase , α -Glucosidase and β -Glucosidase in Pistachio Green Stink Bug , Brachynema germari Kolenati ( Hemiptera : Pentatomidae ). J. Asia. Pac. Entomol., 13: 215–219.
Su, Q., Zhou, X. and Zhang, Y. 2013. Symbiont-Mediated Functions in Insect Hosts. Commun. Integr. Biol., 6.
Sudakaran, S., Kost, C. and Kaltenpoth, M. 2017. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Trends Microbiol., 25: 375–390.
Taylor, C. M., Coffey, P. L., DeLay, B. D. and Dively, G. P. 2014. The Importance of Gut Symbionts in the Development of the Brown Marmorated Stink Bug, Halyomorpha halys (St??l). PLoS One, 9.
Wernegreen, J. J. 2012. Mutualism Meltdown in Insects : Bacteria Constrain Thermal Adaptation. Curr. Opin. Microbiol., 15: 255–262.