Antifeedant Activity of Nanoemulsion Formulation of Arugula Eruca sativa Oil on Elm Leaf Beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae)

Document Type : Original Research

Authors
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
The ­antifeedant activity of nanoemulsion formulation of arugula Eruca sativa Mill. oil was studied against elm leaf beetle Xanthogaleruca luteola (Müller)(Col.:Chrysomelidae) under laboratory conditions at 25±1ºC, 75±5% RH, and LD 16:8 hours. Ingestive LC50 values of the oil were studied in third instar larvae. Then, physiological parameters were evaluated following 24, 48, and 72 hours post feeding at LC50 level. LC50 values 24, 48 and 72 hours after application were 4.940, 3.791, and 2.938 mg mL-1, respectively. Arugula oil at LC50 level decreased the nutritional indices including efficiency of conversion of ingested food, relative growth rate, efficiency of conversion of digested food, and relative consumption rate, but increased feeding deterrence index significantly 72 hours post feeding. Nutritional reserves such as total carbohydrate, protein, and lipid contents and also digestive enzymes containing lipase, α-amylase, and protease activity were decreased showing post-ingestive toxicity. The activity of the detoxifying enzyme glutathione S-transferase was increased, indicating that this enzyme may be involved in detoxification of arugula oil, but general esterase did not change significantly. In general, it can be concluded that arugula oil possess antifeedant activity against X. luteola under laboratory condition. It seems that arugula oil has a great potential to be used as effective botanical pesticides. However, further studies such as greenhouse and field experiments are necessary before recommendation and commercialization process.

Keywords

Subjects


Akhtar, Y. and Isman, M. B. 2004. Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J. Appl. Entomol., 128: 32-38.
Amirmohammadi, F. and Jalali Sendi, J. 2013. The effect of essential oil of Rosmarinus officinalis (Lamiaceae) on mortality and physiological parameters of Xanthogaleruca luteola Mull. (Coleoptera: Chrysomelidae). Plant Pest Res., 3: 59-68.
Arbab, A., Jalali, J. Sahragard, A. 2001. On the biology of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomellidae) in laboratory conditions. J. Entomol. Soc. Iran., 21: 73-85.
Azarenko, O., Jordan, M. A. and Wilson, L. 2014. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics. PloS One, 9(6), p. e100599.
Barillari, J., Canistro, D., Paolini, M., Ferroni, F., Pedulli, G. F., Iori, R. and Valgimigli, L. 2005. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem., 53(7): 2475-2482.
Borek, V., Elberson, L.R., McCaffrey, J. P. and Morra, M. J. 1998. Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J. Agric. Food Chem., 46(12): 5318-5323.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248-254.
Dekker, M., Hennig, K. and Verkerk, R. 2009. Differences in thermal stability of glucosinolates in five Brassica vegetables. Czech J. Food Sci., 27(Special Issue): 85-88.
Demirel, N., Kurt, S., Gunes, U., Uluc, F. T. and Cabuk, F. 2009. Toxicological responses of confused flour beetle, Tribolium confusum du Val (Coleoptera: Tenebrionoidea) to various isothiocyanate compounds. Asian J. Chem., 21: 6411-6416.
Fahey, J. W, Zalcmann, A. T. and Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56: 5-51.
Field, R. P. and Kwong, R. M. 1994. Biological control of the elm leaf beetle. Plant Prot., 9(2): 47-48.
Finney, D. 1971. Probit Analysis, 3rd Edition, Cambridge University, London.
Francis, F., Vanhaelen, N. and Haubruge, E. 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem., 58: 166-174.
Frazier, J. L. 1986. The perception of plant allelochcmicals that inhibit feeding. In: Brattsten, L.B., Ahmad, S. (Eds.), Molecular Aspects of Insect-Plant Associations. Plenum Press, New York, pp. 1-42.
Glendinning, J. I. 1996. Is chemosensory input essential for the rapid rejection of toxic foods? J. Exp. Biol., 199(7): 1523-1534.
Glendinning, J. I. and Slansky, F. 1995. Consumption of a toxic food by caterpillars increases with dietary exposure: Evidence for a role of detoxification enzymes. J. Comp. Physiol. A., 176: 337-345.
Habing, W. H., Pabst, M. J. ans Jakboy, W. B. 1974. Glutathione S-transferases: the first step in mercapturic acid formation. J. Biol. Chem., 24: 7130-7139.
Hassall, K.A. 1990. Biochemistry and Uses of Pesticides. Macmillan Press Ltd., Basingstoke, UK.
Higdon, J. V., Delage, B., Williams, D. E. and Dashwood, R. H. 2007. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharm. Res., 55(3): 224-236.
Huang, Y. and Ho, S. H. 1998. Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J. Stored Prod. Res., 34(1): 11-17.
Huerta, A., Chiffelle, I., Puga, K., Azua, F. and Araya, J. E. 2010. Toxicity and repellence of aqueous and ethanolic extracts from Schinus molle on elm leaf beetle Xanthogaleruca luteola. Crop Prot. 29: 1118-1123.
Isman, M. B. 1994. Botanical insecticides and antifeedants: New sources and perspectives. Pest. Res. J. 6(1): 11-19.
Kawakishi, S. and Kaneko, T. 1987. Interactions of proteins with allyl isothiocyanate. ‎J. Agric. Food Chem., 35: 85-88.
Khosravi, R. and Jalali Sendi, J. 2013. Toxicity, development and physiology effect of Thymus vulgaris and Lavandula angustifolia essential oils on Xanthogaleruca luteola Müll. (Col.: Chrysomelidae). J. King Saud Univ. Sci., 25: 349-355.
Koul, O., Walia, S. and Dhaliwal, G. S. 2008. Essential oils as green pesticides: potential and constraints. Biopestic. Int., 4 (1): 63-84.
Maistrello, L., Lpez, M. A., Soria, F. J. and Ocete, R. 2005. Growth inhibitory activity of Daphne gnidium L. (Thymelaeaceae) extracts on the elm leaf beetle (Col., Chrysomelidae). J. Appl. Entomol., 129: 418-424.
Manneryik, B. and Danielson, U. H. 1988. Glutathione transferases structure and catalytic activity. Critic. Rev. Biochem., 22: 281-334.
Manson, J. S. and Thomson, J. D. 2009. Post‐ingestive effects of nectar alkaloids depend on dominance status of bumblebees. J. Ecol. Entomol., 34(4): 421-426.
Masoumi, M. 2018. Acaricidal activity of arugula Eruca sativa oil on Tetranychus urticae. MSc. Thesis, Fac. Agric., Tarbiat Modares Univ. Iran.
Melakeberhan, H., Xu, A., Kravchenko, A., Mennan, S. and Riga, E. 2006. Potential use of arugula (Eruca sativa L.) as a trap crop for Meloidogyne hapla. Nematology, 8(5): 793-799.
Mikani, A., Wang, Q. S. and Takeda, M. 2012. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach, Periplaneta americana upon starvation. Peptides, 34(1): 135-144.
Perry, A., Yamamoto, S., Ishaaya, I. and Perry, I. 1998. Insecticides in Agriculture and Environment: Retrospects and Prospects. Springer-Verlag, Berlin.
Riga, E., Pierce, F. and Collins, F. 2006. Performance of arugula (Eruca sativa) as a green manure and trap crop for fungal pathogens and parasitic nematode suppression in potato. Am. Phytopathol. Soc. Abst. 96, p.97.
Sakai, T., Satake, H. and Takeda, M. 2006. Nutrient-induced α-amylase and protease activity is regulated by crustacean cardioactive peptide (CCAP) in the cockroach midgut. Peptides, 27: 2157-2164.
Santos, J. C., Faroni, L. R. A., Sousa, A. H. and Guedes, R. N. C. 2011. Fumigant toxicity of allyl isothiocyanate to populations of the red flour beetle Tribolium castaneum. J. Stored Prod. Res., 47(3): 238-243.
Seifi, R., Moharramipour, S. and Ayyari, M. 2018. Acaricidal activity of different fractions of Moringa peregrina on two spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Ind. Crops Prod., 125: 616-621.
Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K.K. and Talalay, P. 1998. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. ‎Cancer Epidemiol. Biomark. Prev., 7(12): 1091-1100.
Shekari, M., Jalali Sendi, J., Etebari, K., Zibaee, A. and Shadparvar, A. 2008. Effects of Artemisia annua L. (Asteracea) on nutritional physiology and enzyme activities of elm leaf beetle, Xanthogaleruca luteola Mull. (Coleoptera: Chrysomellidae). Pestic. Biochem. Physiol., 91: 66-74.
Thurston, G. S. 1988. Biological control of elm leaf beetle. J. Arboriculture., 24(3): 154-159.
Tsujita, T., Ninomiya, H. and Okuda, H. 1989. Pnitrophenyl 865 butyrate hydrolyzing activity of hormone–sensitive lipase 866 from bovine adipose tissue. J. Lipid Res., 30: 997-1004.
Vahabi, M., Moharramipour, S. and Negahban, M. 2016. Antifeedant and repellent activity of nanoencapsulated formulation of Artemisia sieberi essential oil on Xanthogaleruca luteola. J. Plant Prot. Res., 39(1): 59-73.
Valladares, G., Defago, M. T., Palacios, S. and Carpinelia, M.C. 1997. Laboratory evaluation of Melia azedarach (Meliaceae) extracts against the elm leaf beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol., 90: 747-750.
Van Asperen, K. 1962. Study of housefly esterases by mean of sensitive colorimetric method. J. Insect Physiol., 8: 401-416.
Van Eylen, D., Hendrickx, M. and Van Loey, A. 2006. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem., 97(2): 263-271.
Wadleigh, R. W. and Simon, J. Y. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol., 14(4): 1279-1288.
Waldbauer, G. P. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol., 5: 229-288.
Worfel, R. C., Schneider, K. S. and Yang, T. C. S. 1997. Suppressive effect of allyl isothiocyanate on populations of stored grain insect pests. J. Food Proc. Preserv., 21(1): 9-19.
Wu, H., Zhang, G. A., Zeng, S. and Lin, K. C. 2009. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored‐product pests of paddy. Pest Manag. Sci., 65(9): 1003-1008.
Yuval, B., Kaspi, R., Shloush S.and Warburg, M. S. 1998. Nutritional reserves regulate male participation in Mediterranean fruit fly leks. J. Ecol. Entomol., 23: 211-215.
Zhang, Y. S., Talalay, P., Cho, C. G. and Posner, G. H. 1992. A Major Inducer of Anticarcinogenic Protective Enzymes from Broccoli-Isolation and Elucidation of Structure. Proc. Natl. Acad. Sci. USA., 89: 2399-2403.