Imidacloprid Resistance Status and Role of Detoxification Enzymes in Bemisia tabaci (Hemiptera: Aleyrodidae) Populations from Iran

Document Type : Original Research

Authors
1 Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
2 Department of Plant Protection Research, Agriculture and Natural Resources Research and Education Center, Isfahan 81785-199, Islamic Republic of Iran.
3 Department of Plant Protection Research, Agriculture and Natural Resources Research and Education Center, Yazd 89165-571, Islamic Republic of Iran.
Abstract
Neonicotinoid pesticides such as imidacloprid and thiacloprid are agonists of nicotinic Acetylcholine Receptors (nAChRs). This chemical group is commonly used in controlling sucking pests such as cotton whitefly, B. tabaci, one of the most serious and destructive pests of agricultural crops worldwide. Bioassays were performed using a leaf dip method and Ahvaz population with the lowest LC50 value (24.40 mg ai L-1) was considered as the susceptible population. LC50 values of Karaj, Isfahan, Kashan, Gorgan and Minab populations were estimated as 189.81, 136.91, 106.95, 141.09, and 68.31 mg ai L-1, respectively. Low Resistance Ratios (RR) to imidacloprid were observed in the tested populations (RR values< 10). The piperonylbutoxide (PBO) and TriPhenyl Phosphate (TPP) showed the highest synergistic ratios of 1.99 and 2.42 in the population of Kashan, respectively, but DiEthyl Maleate (DEM) did not show a high synergistic ratio. The activity of cytochrome P450-dependent monooxygenase (P450s), CarboxylEsterase (CarEs) and Dlutathione S-Transferases (GST) were measured. There was an increase in the activity of P450s up to 3-fold in the Gorgan population and CarE activity in Kashan population up to 2-fold in comparison to the susceptible population. Based on the results, P450s and CarEs are possibly the enzyme systems responsible for imidacloprid resistance in the tested populations of B. tabaci.

Keywords

Subjects


1. APRD. 2016. Arthropod Pesticide Resistance Database.
2. Barbosa, L. d. F., Yuki, V. A., Marubayashi, J. M., De Marchi, B. R., Perini, F. L., Pavan, M. A., de Barros, D. R., Ghanim, M., Moriones, E., and Navas-Castillo, J. 2015. First report of Bemisia tabaci Mediterranean (Q biotype) species in Brazil. Pest Manag. Sci., 71(4): 501-504.
3. Basij, M., Talebi, K., Ghadamyari, M., Hosseininaveh, V., and Salami, S. 2017. Status of resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to neonicotinoids in Iran and detoxification by cytochrome P450-dependent monooxygenases. Neotrop. Entomol., 46(1): 115-124.
4. Bass, C., Denholm, I., Williamson, M. S., and Nauen, R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Phys., 121: 78-87.
5. Bielza, P., Moreno, I., Belando, A., Gravalos, C., Izquierdo, J., and Nauen, R. 2018. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag. Sci., 75: 45–52.
6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2): 248-254.
7. Brogdon, W. G., and Janet, C. 1997. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J. Am. Mosquito Contr., 13(3): 233-237.
8. Brown, J., Frohlich, D., and Rosell, R. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex. Annu. Rev. Entomol., 40(1): 511-534.
9. Byrne, D. N., and Bellows Jr, T. S. 1991. Whitefly biology. Annu. Rev. Entomol., 36(1): 431-457.
10. Byrne, F. J., Castle, S., Prabhaker, N., and Toscano, N. C. 2003. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag. Sci., 59(3): 347-352.
11. Casida, J. E. 2010. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J. Agr. Food Chem., 59(7): 2923-2931.
12. Crossthwaite, A. J., Bigot, A., Camblin, P., Goodchild, J., Lind, R. J., Slater, R., and Maienfisch, P. 2017. The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. J. Pestic. Sci., 42(3): 67-83.
13. Cuthbertson, A. G., and Vanninen, I. 2015. The importance of maintaining Protected Zone status against Bemisia tabaci. Insects, 6(2): 432-441.
14. Feng, Y., Wu, Q., Wang, S., Chang, X., Xie, W., Xu, B., and Zhang, Y. 2010. Cross‐resistance study and biochemical mechanisms of thiamethoxam resistance in B‐biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag. Sci., 66(3): 313-318.
15. Gorman, K., Slater, R., Blande, J. D., Clarke, A., Wren, J., McCaffery, A., and Denholm, I. 2010. Cross‐resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag. Sci., 66(11): 1186-1190.
16. Gravalos, C., Fernandez, E., Belando, A., Moreno, I., Ros, C., and Bielza, P. 2015. Cross‐resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Manag. Sci., 71(7): 1030-1036.
17. Habig, W. H., Pabst, M. J., and Jakoby, W. B. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249(22): 7130-7139.
18. Horowitz, A. R., Kontsedalov, S., Khasdan, V., and Ishaaya, I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem., 58(4): 216-225.
19. Houndete, T. A., Ketoh, G. K., Hema, O. S., Brevault, T., Glitho, I. A., and Martin, T. 2010. Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Manag. Sci., 66(11): 1181-1185.
20. Jeschke, P., Nauen, R., Schindler, M., and Elbert, A. 2010. Overview of the status and global strategy for neonicotinoids. J. Agr. Food Chem., 59(7): 2897-2908.
21. Jones, C. M., Daniels, M., Andrews, M., Slater, R., Lind, R. J., Gorman, K., Williamson, M. S., and Denholm, I. 2011. Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisiatabaci. Pestic. Biochem. Phys., 101(1): 53-58.
22. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., and Morin, S. 2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Molec., 38(6): 634-644.
23. Meschi, M. 2007. The registered pesticides of Iran. Amozesh Keshavarzi Press, Karaj.
24. Mound, L. A., and Halsey, S. H. 1978. Whitefly of the world. A systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum (Natural History) and John Wiley and Sons, London.
25. Nauen, R., and Denholm, I. 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch. Insect Biochem., 58(4): 200-215.
26. Nauen, R., Stumpf, N., and Elbert, A. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q‐type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag. Sci., 58(9): 868-875.
27. Nauen, R., Wolfel, K., Lueke, B., Myridakis, A., Tsakireli, D., Roditakis, E., Tsagkarakou, A., Stephanou, E., and Vontas, J. 2015. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency. Pestic. Biochem. Phys., 121: 3-11.
28. Nazemi, A., Khajehali, J., and Van Leeuwen, T. 2016. Incidence and characterization of resistance to pyrethroid and organophosphorus insecticides in Thrips tabaci (Thysanoptera: Thripidae) in onion fields in Isfahan, Iran. Pestic. Biochem. Phys., 129: 28-35.
29. Oliveira, M., Henneberry, T., and Anderson, P. 2001. History, current status, and collaborative research projects for Bemisia tabaci. Crop prot., 20(9): 709-723.
30. Pappas, M. L., Migkou, F., and Broufas, G. D. 2013. Incidence of resistance to neonicotinoid insecticides in greenhouse populations of the whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) from Greece. Appl. Entomol. Zool., 48(3): 373-378.
31. Rauch, N., and Nauen, R. 2003. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch. Insect Biochem., 54(4): 165-176.
32. Robertson, J. L., Jones, M. M., Olguin, E., and Alberts, B. 2017. Bioassays with arthropods. CRC press, Boca Raton.
33. Roditakis, E., Grispou, M., Morou, E., Kristoffersen, J. B., Roditakis, N., Nauen, R., Vontas, J., and Tsagkarakou, A. 2009. Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Manag. Sci., 65(3): 313-322.
34. Sahin, I., and Ikten, C. 2017. Neonicotinoid resistance in Bemisia tabaci (Genn., 1889)(Hemiptera: Aleyrodidae) populations from Antalya, Turkey. Turk. Entomol. Derg., 41(2): 169-175.
35. SAS Institute. 2015. Base SAS 9.4 procedures guide: SAS Institute.
36. Satar, G., Ulusoy, M. R., Nauen, R., and Dong, K. 2018. Neonicotinoid insecticide resistance among populations of Bemisia tabaci in the Mediterranean region of Turkey. B. Insectol., 71(2): 171-177.
37. Software, L. 2002. PoloPlus: probit and logit analysis. In: LeOra Software Berkeley, CA.
38. Sogorb, M. A., and Vilanova, E. 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. lett., 128(1-3): 215-228.
39. Takacs, E., Klatyik, S., Mortl, M., Racz, G., Kovacs, K., Darvas, B., and Szekacs, A. 2017. Effects of neonicotinoid insecticide formulations and their components on Daphnia magna–the role of active ingredients and co-formulants. Int. J. Environ. An. Ch., 97(9): 885-900.
40. Tomizawa, M., and Casida, J. E. 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol., 48(1): 339-364.
41. Van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J. Insect Physiol., 8(4): 401-416.
42. Vassiliou, V., Emmanouilidou, M., Perrakis, A., Morou, E., Vontas, J., Tsagkarakou, A., and Roditakis, E. 2011. Insecticide resistance in Bemisia tabaci from Cyprus. Insect sci., 18(1): 30-39.
43. Vivek, S., Srivastava, C., and Subramanian, S. 2018. Association of cytochrome P450 enzyme with reduced susceptibility to neonicotinoids in Bemisia tabaci (Gennadius) populations from India. J. Entomol. Zool. Stud., 6(3): 925-931.
44. Wen, Y., Liu, Z., Bao, H., and Han, Z. 2009. Imidacloprid resistance and its mechanisms in field populations of brown planthopper, Nilaparvata lugens Stål in China. Pestic. Biochem. Phys., 94(1): 36-42.
45. Wheelock, C. E., Shan, G., and Ottea, J. 2005. Overview of carboxylesterases and their role in the metabolism of insecticides. J. Pestic. Sci., 30(2): 75-83.
46. Wilson, J., and Otsuki, T. 2002. To spray or not to spray? Pesticides, Banana Exports, and Food Safety. The World Bank.
47. Yang, X., Xie, W., Wang, S. L., Wu, Q. J., Pan, H. P., Li, R. M., Yang, N. N., Liu, B. M., Xu, B. Y., and Zhou, X. 2013. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China. Pestic. Biochem. Phys., 107(3): 343-350.