IRAP and REMAP-Based Genetic Diversity among Iranian, Turkish, and International Durum Wheat (Triticum turgidum L.) Cultivars

Authors
1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Islamic Republic of Iran.
2 Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Islamic Republic of Iran.
3 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tabriz University, Tabriz, Islamic Republic of Iran.
4 Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization, Maragheh, Islamic Republic of Iran.
Abstract
Retrotransposons (RTNs) are a major source of genomic changes in plant genomes and, therefore, are extensively used as ideal molecular markers for genetic variability, DNA fingerprinting, and genetic mapping studies in plant species. In the present study, two RTN-based marker systems, inter-retrotransposon amplified polymorphisms (IRAPs), and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) were used to assess genetic variability and structure in a collection of 94 durum wheat genotypes. In general, 63 and 141 loci were amplified using 6 IRAP and 15 REMAP primers, respectively. Percentage of polymorphic loci (PPL) in the studied collection for IRAP and REMAP markers were 47.15% and 47.81%, respectively. The average of expected heterozygosity (He), number of effective alleles (Ne), and Shannon's information index (I), separately estimated based on IRAP and REMAP data, were not considerably different. A model-based Bayesian method and cluster analysis using Neighbor joining (NJ) algorithm depicted five clusters. A moderate level of inter-group genetic variability was detected among the clusters (11%) obtained from STRUCTUR software (PhiPT =0.111; P=0.001) with the vast majority of variation (89%) still uncaptured within groups. Most of the accessions and landraces from Iran aggregated together in clusters I and III with the cultivars from Turkey. Also, Iranian and foreign durum wheat landraces were assigned to different clusters or subpopulations in both clustering methods. In conclusion, the results showed that the genetic diversity of Iranian durum wheat is low and it is necessary to extend the genetic base of durum wheat germplasm in Iran.

Keywords

Subjects


1. Abbasi Holasou, H., Abdollahi Mandoulakani, B., Jafari, M. and Bernousi, I. 2016. Use of IRAP and REMAP Markers to Interpret the Population Structure of Linum usitatissimum from Iran. Biologia, 71: 305-315.
2. Abdollahi Mandoulakani, B., Piri, Y., Darvishzadeh, R., Bernoosi, I. and Jafari, M. 2012. Retroelement Insertional Polymorphism and Genetic Diversity in medicago sativa Populations Revealed by IRAP and REMAP Markers. Plant Mol. Biol. Rep., 30: 286-296.
3. Abdollahi Mandoulakani, B., Rahmanpour, S., Shaaf, S., Gholamzadeh Khoei, S., Rastgou, M. and Rafezi, R. 2015c. Towards the Identification of Retrotransposon-Based and ISSR Molecular Markers Associated with Populations Resistant to ZYMV in Melon. S. Afr. J. Bot., 100: 141-147.
4. Abdollahi Mandoulakani, B., Sadigh, P., Azizi, H., Piri, Y., Nasri, Sh. and Arzhangh, S. 2015b. Comparative Assessment of IRAP, REMAP, ISSR, and SSR Markers for Evaluation of Genetic Diversity of Alfalfa (Medicago sativa L.). J. Agr. Sci. Tech. (JAST), 17: 999-1010.
5. Abdollahi Mandoulakani, B., Yaniv, E., Kalendar, R., Raats, D., Bariana, H. S., Bihamta, M. R. and Schulman, A. H. 2015a. Development of IRAP- and REMAP-Derived SCAR Markers for Marker-Assisted Selection of the Stripe Rust Resistance Gene Yr15 Derived from Wild Emmer Wheat. Theor. Appl. Genet., 128: 211-219.
6. Abouzied, H. M., Eldemery, S. M. M. and Abdellatif, K. F. 2013. SSR-Based Genetic Diversity Assessment in Tetraploid and Hexaploid Wheat Populations. Br. Biotechnol. J., 3: 390-404.
7. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., Albright, L. M., Coen, D. M. and Varki, A. 1995. Current Protocols in Molecular Biology. Jon Wiley, New York.
8. Bento, M., Pereira, H. S., Rocheta, M., Gustafson, P., Viegas, W. and Silva, M. 2008. Polyploidization as a Retraction Force in Plant Genome Evolution: Sequence Rearrangements in Triticale. PLoS One, 3: 1-11.
9. Branco, C. J. S., Vieira, E. A., Malone, G., Kopp, M. M., Malone, E., Bernardes, A., Mistura, C. C., Carvalho, F. I. F. and Oliveira, C. A. 2007. IRAP and REMAP Assessments of Genetic Similarity in Rice. J. Appl. Genet., 2: 107–113.
10. Carvalho, A., Guedes-Pinto, H., Eduardo, J. and Lima-Brito, J. 2012. Genetic Diversity in Old Portuguese Durum Wheat Cultivars Assayed by Retrotransposon-Based Markers. Plant Mol. Biol. Rep., 30: 578–589.
11. Carvalho, A., Guedes-Pinto, H., Martins-Lopes, P. and Lima-Brito, J. 2010. Genetic Variability of Old Portuguese Bread Wheat Cultivars Assayed by IRAP and REMAP Markers. Ann. Appl. Biol., 3: 337–345.
12. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Mol. Ecol., 14: 2611–2620.
13. Ferreira Santana, M., Fernandes de Araujo, E., Teodoro de Souza, J., Gomide Mizubuti, E. S. and Vieira de Queiroz, M. 2012. Development of Molecular Markers Based on Retrotransposons for the Analysis of Genetic Variability in Moniliophthora perniciosa. Eur. J. Plant Pathol., 134: 497-507.
14. Gholamzadeh Khoei, S., Abdollahi Mandoulakani, B. and Bernousi, I. 2015. Genetic Diversity in Iranian Melon Populations and Hybrids Assessed by IRAP and REMAP Markers. J. Agr. Sci. Tech. (JAST), 17: 1267-1277.
15. Gupta, P. K., Rustgi, S. and Kulwal, P. L. 2005. Linkage Disequilibrium and Association Studies in Higher Plants: Present Status and Future Prospects. Plant. Mol. Biol., 57: 461–485.
16. Huan-Van, A., Ruzic, L., Maisonhaute, C. and Capy, P. 2005. Abundance, Distribution and Dynamics of Retrotransposable Elements and Transposons: Similarities and Differences. Cytogenet. Genome Res., 110: 426–440.
17. Kabbaj, H., Sall, A. T., Al-Abdallat, A., Geleta, M., Amri, A., Filali-Maltouf, A., Belkadi, B., Ortiz, R. and Bassi, F. M. 2017. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germpalsm Reveals the History of Alleles Exchange. Front. Plant Sci., 8: 1277. https://doi.org/10.3389/fpls.2017.01277
18. Kalendar, R., Grab, T., Regina, M., Souniemi, A. and Schulman, A. H. 1999. IRAP and REMAP: Two New Retrotransposon-Based DNA Fingerprinting Techniques. Theor. Appl. Genet., 98: 704–711.
19. Kalendar, R. and Schulman, A. H. 2006. IRAP and REMAP for Retrotransposon-Based Genotyping and Fingerprinting. Nat. Protoc., 1: 2478–2484.
20. Key, J. M. 2005. Wheat: Its Concept, Evolution, and Taxonomy. In: “Durum Wheat Breeding: Current Approaches and Future Strategies”, (Eds.): Royo, C., Nachit, M. M., Di Fonzo, N., Araus, J. L., Pfeiffer, W. H., Slafer, G. A. An Imprint of the Haworth Press Inc., Food Products Press, New York, London, Oxford, Vol. 1., PP. 3–61.
21. Laurentin, H. 2009. Data Analysis for Molecular Characterization of Plant Genetic Resources. Genet. Resour. Crop Evol., 56: 277–292.
22. Loveless, M. D. and Hamrick, J. L. 1984. Ecological Determinates of Genetic Structure in Plant Populations. Annu. Rev. Ecol. Syst., 15: 65–95.
23. Mardi, M., Naghavi, M. R., Pirseyedi, S. M., Kazemi Alamooti, M., Rashidi Monfared, S., Ahkami, A. H., Omidbakhsh, M. A., Alavi, N. S., Salehi Shanjani, P. and Katsiotis, A. 2011. Comparative Assessment of SSAP, AFLP and SSR Markers for Evaluation of Genetic Diversity of Durum Wheat (Triticum turgidum L. var. Durum). J. Agr. Sci. Tech. (JAST), 13: 905-920.
24. Martos, V., Royo, C., Rharrabti, Y. and Garcia del Moral, L. F. 2005. Using AFLPs to Determine Phylogenetic Relationships and Genetic Erosion in Durum Wheat Cultivars Released in Italy and Spain throughout the 20th Century. Filed Crop Res., 91: 107-116.
25. Nasri, S. H., Abdollahi Mandoulakani, B., Darvishzadeh, R. and Bernoosi, I. 2013. Retrotransposon Insertional Polymorphism in Iranian Bread Wheat Cultivars and Breeding Lines Revealed by IRAP and REMAP Markers. Biochem. Genet., 51: 927-943.
26. Peakall, R. and Smouse, P. E. 2006. GenAlEx 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes., 6: 288–295.
27. Peng, J., Sun, D. and Nevo, E. 2011. Wild Emmer Wheat, Triticum dicoccoides, Occupies a Pivotal Position in Wheat Domestication Process. Aust. J. Crop Sci., 5: 1127–1143.
28. Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155: 945-959.
29. Rao, N. 2004. Plant Genetic Resources: Advancing Conservation and Use through Biotechnology. Afr. J. Biotechnol., 3: 136–145.
30. Ren, J., Sun, D., Chen, L., You, F. M., Wang, J., Peng, Y., Nevo, E., Sun, D., Luo, M. C. and Peng, J. 2013. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat. Int. J. Mol. Sci., 14: 7061-7088.
31. Rohlf, F. J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, New York.
32. Schulman, A. H., Flavell, A. J. and Ellis, T. H. N. 2004. The Application of LTR Retrotransposons as Molecular Markers in Plants. Methods Mol. Biol., 260: 145-173.
33. Sen, A. 2017. Retrotransposon Insertion Variations in Doubled Haploid Bread Wheat Mutants. Plant Growth Regul. 81: 325-333.
34. Smykal, P., Bacova-Kerteszova, N., Kalendar, R., Corander, J., Schlman, A. H. and Pavelek, M. 2011. Genetic Diversity of Cultivated Flax (Linum usitatissimum L.) Germplasm Assessed by Retrotransposon-Based Markers. Theor. Appl. Genet., 122: 1385-1397.
35. Sorkheh, K., Koohi Dehkordi, M., Ercisli, S., Hegedus, A. and Halasz, J. 2017. Comparison of Traditional and New Generation DNA Markers Declares High Genetic Diversity and Differentiated Population Structure of Wild Almond Species. Sci Rep., 7: 1-17.
36. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol., 24: 1596-1599.
37. Vicient, C. M., Kalendar, R., Anamthawat-Jónsson, K., Suoniemi, A. and Schulman, A. H. 1999. Structure, Functionality, and Evolution of the BARE-1 Retrotransposon of Barley. Genetica, 107: 53-63.
38. Zaim, M., El Hassouni, Kh., Gamba, F., Filali-Maltouf, A., Belkadi, B., Sourour, A., Amri, A., Nachit, M., Taghouti, M. and Bassi, F. M. 2017. Wide Crosses of Durum Wheat (Triticum durum Desf.) Reveal Good Disease Resistance, Yield Stability, and Industrial Quality across Mediterranean Sites. Field Crops Res., 214: 219-227.