Total Phenol/Flavonoid Content, Antibacterial and DPPH Free Radical Scavenging Activities of Medicinal Plants

Document Type : Original Research

Authors
1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Islamic Republic of Iran.
2 Department of Food Science and Technology, Faculty of Agriculture, University of Zabol, Zabol, Islamic Republic of Iran.
Abstract
The general desire to replace antibiotics and synthetic antioxidants with natural plants extracts has gained importance in recent years. This approach may be associated with the negative health effects of synthetic antioxidants and antibiotic resistance. Due to these controversial issues, in this study, free radical scavenging activity, Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and antimicrobial activity of Methanolic Extracts (ME) from Teucrium polium, Smyrnium cordifolium Boiss, Mentha longifolia, and Nectaroscordum tripedale leaves were compared with Crocus sativus tepals. The antioxidant activity of these extracts was investigated in comparison with BHA, BHT, and α-tocopherol by DPPH method. Antimicrobial activities were determined by paper disc agar diffusion method against S. aureus (Gram positive) and E. coli O157: H7 (Gram negative). Results showed that C. sativus tepals contained the highest TPC (37.36 mg GAE g-1) and TFC (138.52 mg Q g-1). Also, radical scavenging activity of C. sativus tepals ME (87.33%) was significantly higher than the other extracts; and it was the same as BHA and α-tocopherol statistically. In addition, a significant relationship between radical scavenging activity and TPC (R= 0.964) and TFC (R= 0.806) was found, illustrating the major role of these compounds in antioxidant activity of the mentioned plants. Antibacterial activity of N. tripedale leaf extract and C. sativus tepal extract against the two abovementioned pathogens were the highest among all the studied herbal extracts (P< 0.05). Moreover, Results of antimicrobial activities were also strongly correlated to free radical scavenging activity and TPC, which indicates the importance of these factors on antimicrobial properties of the five studied medicinal herbs.

Keywords

Subjects


Abbasvali, M., Ranaei A., Shekarforoush, S. S. and Moshtaghi, H .2016. The effects of aqueous and alcoholic saffron (Crocus sativus) tepal extracts on quality and shelf-life of pacific white shrimp (Litopeneous vannamei) during iced storage. J Food Quality., 39: 732–742.
Amiri, H., Khavari-Nejad, R. A., Masoud, S. H., Chalabian, F. and Rustaiyan, A. 2006 Composition and Antimicrobial Activity of the Essential Oil from Stems, Leaves, Fruits and Roots of Smyrnium cordifolium Boiss. From Iran. J Essent Oil Res., 18: 574–577.
Asekun, O. T., Grierson, D. S. and Afolayan A. J. 2007. Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. Capensis. Food Chem., 101: 995–998.
Azadi, P., Bagheri, K., Gholami, M., Mirmasoumi, M., Moradi, A. and A. Sharafi, A. 2017. Thin Cell Layer, a Suitable Explant for In vitro Regeneration of Saffron (Crocus sativus L.). J. Agr. Sci. Tech., 19: 1429-1435.

Bagherzade, G., Tavakoli, M. M. and Namaei, M. H. 2017. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed., 7: 227–233.
Bahadori, M. B., Zengin, G., Bahadori, S., Dinparast, L. and Movahhedin, N. 2018. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). Int J Food Prop., 21: 183–193.
Belmekki, N., Bendimerad, N., Bekhechi, C. and Fernandez, X. 2013. Chemical analysis and antimicrobial activity of Teucrium polium L. essential oil from Western Algeria. J Med Plants Res., 7: 897–902.
Burits, M. and Bucar, F. 2000. Antioxidant activity of Nigella sativa essential oil. Phytother Res., 14: 323–328.
Carmona, M., Zalacain, A., Salinas, M. R. and Alonso, G. L. 2007. A new approach to saffron aroma. Crit Rev Food Sci., 47: 145–159.
Chang, Y. L., Kim, D. O., Lee, K. W., Lee, H. J. and Lee, C. Y. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agr Food Chem., 50:3713–3717.
De Marino, S., Festa, C., Zollo, F., Incollingo, F., Raimo, G., Evangelista, G. and Iorizzi, M. 2012. Antioxidant activity of phenolic and phenylethanoid glycosides from Teucrium polium L. Food Chem., 133: 21–28.
de Sousa Barros, A., de Morais, S. M., Ferreira, P. A. T., Vieira, Í. G. P., Craveiro, A. A., dos Santos Fontenelle, R. O., de Menezes, J. E. S. A., da Silva, F. W. F. and de Sousa, H. A. 2015. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod., 76: 557–564.
Gandomi Nasrabadi, H., Azami Sarokelaei, L., Misaghi, A., Abbaszadeh, S., Shariatifar, N. and Tayyar Hashtjin, N. 2012. Antibacterial effect of aqueous and alcoholic extracts from petal of saffron (Crocus sativus L.) on some foodborne bacterial pathogens. J Med Plants. 2: 189–196.
Ghasemi, T., Abnous, K., Vahdati, F., Mehri, S., Razavi, B. M. and Hosseinzadeh, H. 2014.Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus. Drug Res (Stuttg)., 65: 337–343.
Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A., Polissiou, M., Adiguzel, A. and Ozkan, H. 2007. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chem., 103: 1449–1456.
Hajlaoui, H., Trabelsi, N., Noumi, E., Snoussi, M., Fallah, H., Ksouri R. and Bakhrouf, A. 2009. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J Microbiol Biotechnol., 25: 2227–2238.
Hasani, P., Yasa, N., Vosough-Ghanbari, S., Mohammadirad, A., Dehghan, G. and Abdollahi, M. 2007. In vivo antioxidant potential of Teucrium polium, as compared to α-tocopherol. Acta Pharm., 57: 123–129.
Jahan, N., Khatoon, R., Shahzad, A., Shahid, M. and Ahmad, S. 2013. Comparison of antibacterial activity of parent plant of Tylophora indica Merr. With its in vitro raised plant and leaf callus. Afr J Biotechnol., 12: 4891– 4896.
Karaman, I., Sahin, F. and Gulluce M. 2003. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol., 85:231–235
Khanahmadi, M., Rezazadeh, S. H. and Taran, M. 2010. In vitro antimicrobial and antioxidant properties of Smyrnium cordifolium Boiss, (Umbelliferae) extract. Asian J Plant Sci., 9:99–103.
Lee, I. A. H., Lee, J. H., Baek, N. I. and Kim, D. H. 2005. Antihyperlipidemic effect of crocin isolated from the fractus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull., 28: 2106–10.
Lotfi, L., Kalbasi-Ashtari, A. and Hamedi M-Ghorbani, F. 2013. Effects of sulfur water extraction on anthocyanins properties of tepals in flower of saffron (Crocus sativus L). J Food Sci Tech ., 1–9.
Mahmoudvand, H., Ezatpour, B., Rashidipour, M., Jahanbakhsh, S. and Mahmoudvand, H. 2016. Evaluation of the scolicidal effects of Nectaroscordum tripedale extract and its acute toxicity in mice model. Pak J Pharm Sci., 29: 2125–2128.
Mehrabi, Y. and Mehrabi, N. 2011. Determination of feed nutritive value of Smyrnium cordifolium Boiss in animal nutrition. Middle-East J Sci Res., 5:659–663.
Menghini, L., Leporini, L., Vecchiotti, G., Locatelli, M., Carradori, S., Ferrante, C., Zengin, G., Recinella, L., Chiavaroli A., Leone, S., Brunetti, L. and Orlando, G. 2018. Crocus sativus L. Stigmas and byproducts: Qualitative fingerprint, antioxidant potentials and enzyme inhibitory activities. Food Res Int., 109: 91–98.
Mianabadi, M., Hoshani, M. and Salmanian, S. 2015. Antimicrobial and anti-oxidative effects of methanolic extract of Dorema aucheri Boiss. J. Agr. Sci. Tech., 17: 623-34
Ochiai, T., Ohno, S., Soeda, S., Tanaka., H., Shoyama, Y. and Shimeno, H. 2004. Crocin prevents the death of rat pheochromocytoma (PC-12) cells by its antioxidant effects stronger than those of a-tocopherol. Neurosci Lett., 362: 61–64.
Rahaiee, S., Moini, S., Hashemi, M. and Shojaosadati, S. A. 2015. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J Food Sci Tech., 52:1881–1888.
Sahin, F., Karaman, I., Gulluce, M., Ogutcu, H., Sengul, M., Adiguzel, A., Ozturk, S. and Kotan, R. 2003. Evaluation of antimicrobial activities of Satureja hortensis L. J Ethnopharmacol, 87: 61–65.
Sethi, S., Dutta, A., Gupta, B. L. and Gupta, S. 2013. Antimicrobial activity of spices against isolated food borne pathogens. Int J Pharm Sci., 5: 260–262.
Shan, B., Cai Y. Z., Brooks, J. D. and Corke, H. 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol., 117: 112–119.
Sodeifian, G. H., Azizi, J. and Ghoreishi, S. M. 2014. Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide. J Supercrit Fluid, 95: 1–7.
Stanković, S. M., Nićiforović, N., Mihailović, V., Topuzović, M. and Solujić, S. 2012. Antioxidant activity, total phenolic content and flavonoid concentrations of different plant parts of Teucrium polium L. subsp. Polium. Acta Soc Bot Pol., 81:117–122.
Tabaraki, R. and Ghadiri, F. 2013. In vitro antioxidant activities of aqueous and methanolic extracts of Smyrnium cordifolium Boiss and Sinapis arvensis L. Int Food Res J., 20: 2111–2115.
Tavakoli, M., Hamidi-esfahani, Z., Hejazi, M. A., Azizi, M. H. and Abbasi, S. 2017. Characterization of probiotic abilities of lactobacilli isolated from iranian koozeh traditional cheese. Pol J Food Nutr Sci., 67:41–8.
Tepe, B., Donmez, E., Unlu, M., Candan, F., Daferera, D., Vardar-Unlu, G., Polissiou, M. and Sokmen, A. 2004. Antimicrobial and antioxidative activities of the essential oils and methanol extractsof Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chem., 84: 519–525.
Vali Aftari, R., Rezaei, K., Bandani, A. R. and Mortazavi, A. 2017. Antioxidant activity optimization of Spirulina platensis C-phycocyanin obtained by freeze-thaw, microwave-assisted and ultrasound-assisted extraction methods. Qual Assur Saf Crop Foods., 9: 1–9.
Yang, C. S., Ho, C. T., Zhang, J., Wan, X., Zhang, K. and Lim, J. 2018. Antioxidants: Differing Meanings in Food Science and Health Science. J Agric Food Chem., 66: 3063–3068.
Zeka, K., Ruparelia, K. C., Continenza, M. A., Stagos, D., Vegliò, F. and Arroo, R. R. J. 2015. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia., 107: 128–134.