Molecular Phylogeny of Aegilops L. and Triticum L. Species Revealed by Internal Transcribed Spacers of Ribosomal Genes

Authors
Department of Agronomy and Plant Breeding, Ilam University, Ilam, Islamic Republic of Iran.
Abstract
Phylogenetic analysis of Triticum L. and Aegilops L. species was performed using the nuclear ribosomal Internal Transcribed Spacer (ITS) sequences. The full length of PCR products for ITS1 and ITS2 ranged from 650 bp to 700 bp, respectively. Sequence divergences between species were estimated following aligning. The average G+C contents of the ITS regions was 60.8% for ITS2 and 61.5% for ITS1. The phylogenetic analyses were constructed using the Neighbor-Joining (NJ) method based on pairwise genetic distances. The resulting NJ tree successfully separated Triticum and Aegilops species and displayed three clusters, einkorn wheats, polyploid wheats, and Aegilops. Our results confirmed that the A genome of bread wheat is more related to T. urartu than T. boeticum. In the case of the D genome, the affinity between Ae. tauschii and bread wheat was greater than other D genome-bearing species of Aegilops (Ae. crassa and Ae. cylindrica). Obtained results also revealed that Ae. speltoides was separated from Aegilops cluster and grouped with polyploid wheats. The close relationship between Ae. speltoides and polyploid wheats indicates that the former is the most likely donor of the B genomes to wheats. The present study verified the potential of ITS regions in phylogenetic studies and strongly supported the evolution of cultivated wheats, which occurred through hybridization and polyploidization between Triticum and Aegilops species.

Keywords

Subjects


1. Albach, D. C. and Chase, M. W. 2004. Incongruence in Veroniceae (Plantaginaceae): Evidence from Two Plastid and a Nuclear Ribosomal DNA Region. Mol. Phylogenet. Evol., 32: 183–197.
2. Alnaddaf, L. M., Moualla, M. Y. and Haider, N. 2013. Genetic Relationships among Aegilops L. and Triticum L. Species Based on the Internal Transcribed Spacer Sequences of nrDNA (ITS). Asian J. Agric. Sci., 5: 108-117.
3. Alnaddaf, L. M., Moualla, M. Y. and Haider, N. 2012. Resolving Genetic Relationships among Aegilops L. and Triticum L. Species Using Analysis of Chloroplast DNA by Cleaved Amplified Polymorphic Sequence (CAPS). Asian J. Agric. Sci., 4: 270-279.
4. Alvarez, I. and Wendel. J. F. 2003. Ribosomal ITS Sequences and Plant Phylogenetic Inference. Mol. Phylogenet. Evol., 29: 417–434.
5. Badaeva, E. D., Amosova, A. V., Muravenko, O. V., Samatadze, T. E., Chikida, N. N., Zelenin A. V., Friebe, B. and Gill, B. S. 2002. Genome Differentiation in Aegilops. 3. Evolution of the D-Genome Cluster. Plant Syst. Evol., 231: 163–190.
6. Bandopadhyay, R., Sharma, S., Rustgi, S., Singh, R., Kumar, A., Balyan, H. S. and Gupta, P. K. 2004. DNA Polymorphism among 18 Species of Triticum–Aegilops Complex Using Wheat EST–SSRs. Plant Sci., 166: 349–356.
7. Barkman, T. J. and Simpson, B. B. 2002. Hybrid Origin and Parentage of Dendrochilum acuiferum (Orchidaceae) Inferred in a Phylogenetic Context Using Nuclear and Plastid DNA Sequence Data. Syst. Bot., 27: 209–220.
8. Baum, B. R., Edwards, T. and Johnson, D. A. 2009. Phylogenetic Relationships among Diploid Aegilops Species Inferred from 5S rDNA Units. Mol. Phylogenet. Evol., 53: 34–44.
9. Bordbar, F., Rahiminejad, M. R., Saeidi, H. and Blattner, F. R. 2011. Phylogeny and Genetic Diversity of D-Genome Species of Aegilops and Triticum (Triticeae, Poaceae) from Iran Based on Microsatellites, ITS, and trnL-F. Plant Syst. Evol., 291: 117–131.
10. Buchner, P, Prosser, I. M. and Hawkesford, M. J. 2004. Phylogeny and Expression of Paralogous and Orthologous Sulphate Transporter Genes in Diploid and Hexaploid Wheats. Genome, 47: 526–534.
11. Calonje, M., Martın-Bravo, S., Dobes, C., Gong, W., Jordon-Thaden, I., Kiefer, C., Kiefer, M., Paule, J., Schmickl, R. and Koch, M. A. 2009. Non-Coding Nuclear DNA Markers in Phylogenetic Reconstruction. Plant Syst. Evol., 282: 257–280.
12. Chalupska, C., Lee, H. Y., Faris, J. D., Evrard, A., Chalhoub, B., Haselkorn, R. and Gronicki, P. 2008. Acchomoeoloci and the Evolution of the Wheat Genomes. Proc. Natl. Acad. Sci. USA, 105: 9691–9696.
13. Dizkirici, A., Kansu, C. and Onde, S. 2016. Molecular Phylogeny of Triticum and Aegilops Genera Based on ITS and matK Sequence Data. Pak. J. Bot., 48: 143-153.
14. Doyle, J. J. and Doyle, J. L. 1987. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull., 19: 11-15.
15. Eig, A. 1929. Monographisch-Kritischeubersicht der Gattung Aegilops. Feddes Rept., 55: 1-228.
16. Eilam, T., Anikster, Y., Millet, E., Manisterski, J., Sagi-Assif, O. and Feldman, M. 2007. Genome Size and Genome Evolution in Diploid Triticeae Species. Genome, 50: 1029–1037.
17. Fehrer, J., Gemeinholzer, B., Chrtek, J. and Brautigam, S. 2007. Incongruent Plastid and Nuclear DNA Phylogenies Reveal Ancient Intergeneric Hybridization in Pilosellahawk Weeds (Hieracium, Cichorieae, Asteraceae). Mol. Phylogenet. Evol., 42: 347–361.
18. Galili, S., Avivi, Y., Millet, E. and Feldmen, M. 2000. RFLP-Based Analysis of Three RbcS Subfamilies in Diploid and Polyploid Species of Wheat. Mol. Gen. Genet., 263: 674–680.
19. Giorgi, D., D’Ovidio, R., Tanzarella, O. A. and Porceddu, E. 2002. RFLP Analysis of Aegilops Species Belonging to the sitopsis Section. Genet. Res Crop Evol., 49: 145–151.
20. Golovnina, K. A., Glushkov, S. A., Blinov, A. G., Mayorov, V. I., Adkison, L. R. and Goncharov, N. P. 2007. Molecular Phylogeny of the Genus Triticum L. Pl. Syst. Evol., 264: 195–216.
21. Golovnina, K. A., Kondratenko, E. Y., Blinov, A. G. and Goncharov, N. P. 2009. Phylogeny of the A Genomes of Wild and Cultivated Wheat Species. Russ. J. Genet., 45: 1360–1367.
22. Goncharov, N. P., Bannikova, S. V. and Kawahara, T. 2007. Wheat Artificial Amphiploids with Triticum timopheevii Genome, Preservation and Reproduction of Wheat Artificial Amphiploids. Genet. Res. Crop. Evol., 54: 1507–1514.
23. Goryunova, S. V., Chikida, N. N., Gori, M. and Kochieva, E. Z. 2005. Analysis of Nucleotide Sequence Polymorphism of Internal Transcribed Spacers of Ribosomal Genes in Diploid Aegilops (L.) Species. Mol Biol., 39: 173–176.
24. Haider, N. 2013. The Origin of the B Genome of Bread Wheat (Triticum aestivum L.). Russ. J. Genet., 49: 263–274.
25. Haque, I., Bandopadhyay, R. and Mukhopadhyay, K. 2009. Intraspecific Variation in Commiphora wightii Populations Based on Internal Transcribed Spacer (ITS1-5.8S-ITS2) Sequences of rDNA. Diversity, 1: 89-101.
26. Huang, S. A., Sirikhachornkit, J. D., Faris, X., Su, B., Gill, S., Haselkorn, R. and Gornicki, P. 2002. Phylogenetic Analysis of the Acetyl-CoA Carboxylase and 3-Phosphoglycerate Kinase Loci in Wheat and Other Grasses. Plant Mol. Biol., 48: 805-820.
27. Khlestkina, E. K. and Salina, E. A. 2001. Genome-Specific Markers of Tetraploid Wheats and Putative Diploid Progenitor Species. Plant Breed., 120: 227–232.
28. Kihara, H. 1954. Considerations on the Evolution and Distribution of Aegilops Species Based on the Analyzer-Method. Cytologia, 19: 336–357.
29. Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K. and Ozkan, H. 2011. Aegilops, Wild Crop Relatives, Genomic and Breeding Resources. Cereals, Springer, PP. 1-76.
30. Kilian, B., Ozkan, H., Deusch, O., Effgen, S., Brandolini, A., Kohl, J., Martin, W. and Salamini, F. 2007b. Independent Wheat B and G Genome Origins in Outcrossing Aegilops Progenitor Haplotypes. Mol. Biol. Evol., 24: 217–227.
31. Kilian, B., Ozkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F. and Martin, W. 2007a. Molecular Diversity at 18 Loci in 321 Wild and 92 Domesticate Lines Reveal No Reduction of Nucleotide Diversity during Triticum monococcum (Einkorn) Domestication, Implications for the Origin of Agriculture. Mol. Biol. Evol., 24: 2657–2668.
32. Konarev, V. G., Gavrilyuk, I. P., Gubareva, N. K. and Peneva, T. I. 1979. Seed Protein in Genome Analysis, Cultivar Identification, and Documentation of Cereal Genetic Resources: A Review. Cereal Chem., 56: 272–278.
33. Logacheva, M. D., Valiejo-Roman, C. M., Degtjareva, G. V., Stratton, J. M., Downie, S. R., Samigullin, T. H. and Pimenov, M. G. 2010. A Comparison of nrDNA ITS and ETS Loci for Phylogenetic Inference in the Umbelliferae: An Example from Tribe Tordylieae. Mol. Phylogenet. Evol., 57: 471–476.
34. Nalini, E., Bhagwat, S. G. and Jawali, N. 2007. Identification and Characterization of Some ITS Variants from Hexaploid wheat (Triticum aestivum L.). Plant Sci., 173: 262-268.
35. Nepolo, E., Chimwamurombe, P. M., Cullisand, C. A. and Kandawa-Schulz, M. A. 2010. Determining Genetic Diversity Based on Ribosomal Intergenic Spacer Length Variation in Marama Bean (Tylosema esculentum) from the Omipanda Area, Eastern Namibia. Afr. J. Plant Sci., 4: 368-373.
36. Nishikawa, K., Furutam Y., Yamada, T. and Kudo, S. 1992. Genetic Studies of α-Amylase Isozymes in Wheat VII. Variation in Diploid Ancestral Species and Phylogeny of Tetraploid Wheat. Jpn. J. Genet., 67: 1–15.
37. Pathak, G. N. 1940. Studies in the Cytology of Cereals. J. Genet., 39: 437.
38. Petersen, G., Seberg, O., Yde, M. and Berthelsen, K. 2006. Phylogenetic Relationships of Triticum and Aegilops and Evidence for the Origin of the A, B, and D Genomes of Common Wheat (Triticum aestivum). Mol. Phylogenet. Evol., 39: 70–82.
39. Poczai, P. and Hyvonen, J. 2010. Nuclear Ribosomal Spacer Regions in Plant Phylogenetics, Problems and Prospects. Mol. Biol. Rep., 37: 1897–1912.
40. Porter, C. H. and Collins, F. H. 1991. Species-Diagnostic Differences in the Ribosomal DNA Internal Transcribed Spacer from the Sibling Species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am. J. Trop. Med. Hyg., 45: 271–279.
41. Riley, R. and Chapman, V. 1960. The D Genome of Hexaploid Wheat. Wheat Info. Serv., 11: 18–19.
42. Sallares, R. and Brown, T. A. 1999. PCR-Based Analysis of the Intergenic Spacers of the Nor Loci on the A Genomes of Triticum Diploids and Polyploids. Genome, 42: 16-128.
43. Sallares, R. and Brown, T. A. 2004. Phylogenetic Analysis of Complete 59 External Transcribed Spacers of the 18S Ribosomal RNA Genes of Diploid Aegilops and Related Species (Triticeae, Poaceae). Genet. Resour. Crop Evol., 51: 701–712.
44. Sasanuma, T., Chabane, K., Endo, T. R. and Valkoun, J. 2004. Characterization of Genetic Variation in and Phylogenetic Relationships among Diploid Aegilops Species by AFLP, Incongruity of Chloroplastand Nuclear Data. Theor. Appl. Genet., 108: 612–618.
45. Sharma, S., Rustgi, S., Balyan, H. S. and Gupta, P.K. 2002. Internal Transcribed Spacer (ITS) Sequences of Ribosomal DNA of Wild Barley and Their Comparison with ITS Sequences in Common Wheat. Barley Genet. Newsl., 32: 1T38-45.
46. Singh, A., Devarumath, R. M., Ramarao, S., Singh, V. P.and Raina, S. N. 2008. Assessment of Genetic Diversity and Phylogenetic Relationships Based on Ribosomal DNA Repeat Unit Length Variation and Internal Transcribed Spacer (ITS) Sequences in Chickpea (Cicerarietinum) Cultivars and Its Wild Species. Genet. Resour. Crop Evol., 55: 65-79.
47. Sliai, A. M. and Amer, S. A. M. 2011. Contribution of Chloroplast DNA in the Biodiversity of Some Aegilops Species. Afr. J. Biotechnol., 10: 2212-2215.
48. Vakhitov, V. A., Chemeris, A. V., Sabirzhanov, B. E., Akhunov, E. D., Kulikov, A. M., Nikonorov, Y. M., Gimalov, F. R., Bikbulatova, S. M. and Baymiev, A. K. 2003. The Phylogeny of Triticum L. and Aegilops L. Inferred from Comparative Analysis of Nucleotide Sequences in rDNA Promoter Regions. Russ. J. Genet., 39: 1–11.
49. Van-Slageren, M. W. 1994. Wild Wheats, a Monograph of Aegilops L. and Amblyopyrum (Jaub. &Spach) Eig (Poaceae). Joint Publication of ICARDA, Aleppo, Syria and Wageningen Agricultural University, The Netherlands.
50. Wang, G. Z., Matsuoka, Y. and Tsunewaki, K. 2000. Evolutionary Features of Chondriome Divergence in Triticum (wheat) and Aegilops Shown by RFLP Analysis of Mitochondrial DNAs. Theor. Appl. Genet., 100: 221–231.
51. Wang, J. B., Wang, C., Shi, S. H. and Zhong, Y. 2000. ITS Regions in Diploids of Aegilops (Poaceae) and Their Phylogenetic Implications. Hereditas, 132: 209–213.
52. Yamane, K. and Kawahara, T. 2005. Intra and Interspecific Phylogenetic Relationships among Diploid Triticum-Aegilops Species (Poaceae) Based on Base-Pair Substitutions, Indels, and Microsatellites in Chloroplast Noncoding Sequences. Am. J. Bot., 92: 1887–1898.
53. Zhang, W., Qu, L. J., Gu, H., Gao, W., Liu, M., Chen, J. and Chen, Z. 2002. Studies on the Origin and Evolution of Tetraploid Wheats Based on the Internal Transcribed Spacer (ITS) Sequences of Nuclear Ribosomal DNA. Theor. Appl. Genet., 104: 1099–1106.