Yield and Quality Traits of Field Grown Tomato as Affected by Cultivar and Nitrogen Application Rate

Authors
1 Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
2 Institute of Applied Physics "N. Carrara '- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Florence), Italy.
Abstract
This study was conducted in 2014-2015 to determine the effects of nitrogen (N) fertilization on yield, quality traits, and storage ability of two tomato cultivars, namely, ‘Calista’, for processing, and ‘Volna’, for fresh market. N was applied in doses of 0, 50, 100, and 200 kg N·ha-1. Significant interactions were found between the studied years, N fertilization, and cultivars. Both tested cultivars produced high and similar yields in the year with good growing conditions during vegetation period. In the year with unfavorable weather conditions (lower average temperature, more total rainfall, and a smaller sum of GDD), cv. ‘Volna’ produced a significantly lower yield compared to the cv. ‘Calista’. N fertilization had a significant impact on yield, however, the reaction of cultivars varied in each years. In 2014, quadratic positive regression was found between N rates and yield of cv. ‘Calista’ (R2=0.90) and linear relation for cv. ‘Volna’ (R2=0.77). In 2015, however a linear positive regression was found for cv. Volna (R2=0.71) and cv. Calista (R2= 0.44). The chemical and physical parameters of tomato quality varied depending on the year of cultivation. On average for the studied years and cultivar, increasing N fertilization affected the lycopene and soluble polyphenols content, as well as total flavonoids and ascorbic acid content and antiradical activity. N rate did not affect dry matter and soluble solids content, fruit firmness, fruit redness, and acidity. Cultivar ‘Calista’ had significantly higher lycopene content and better fruit firmness than cv. ‘Volna’ for fresh market. Furthermore, the storage ability of tomatoes cv. ‘Calista’ was significantly better than cv. ‘Volna’.

Keywords

Subjects


1. Abiso, E., Satheesh, N. and Hailu, A. 2015. Effect of Storage Methods and Ripening Stages on Postharvest Quality of Tomato (Lycopersicon esculentum Mill) cv. Chali. Annals. Food Sci. Tech., 16(1): 127-137.
2. Aziz, A. B. 1968. Seasonal Changes in the Physical and Chemical Composition of Tomato Fruits as Affected by Nitrogen Levels. H. Veenman. Mededelingen Landbouwhogeschool Wageningen., 68(7): 1-6.
3. Bartz, J. A., Geraldson, G. M. and Crill, J. P. 1979. Nitrogen Nutrition of Tomato Plants and Susceptibility of the Fruit to Bacterial Soft Rot. Phytopathology, 69 (2): 163-166
4. Battilani, A., Bussieres, P. and Dumas, Y. 2000. Irrigere: An Improved Version of an Irrigation Scheduling Model for Processing Tomato Crop. In: Fereira M.I. and Jones H.G. (eds). Proc. of the 3rd International Seminar on Irrigation Horticultural Crops. ISHS Acta Hort., 573: 519-526.
5. Battilani, A. 2006: Water and Nitrogen Use Efficiency. Dry Matter Accumulation and Nitrogen Uptake in Fertigated Processing Tomato. Acta Hort., 724:67-74
6. Benard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C., Weiss, M. and Genard, M. 2009. Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality, with Special Emphasis on Sugars Acids, Ascorbate, Carotenoids, and Phenolic Compounds. J. Agric. Food Chem., 57: 4112-4123.
7. Borguini, R. G., Markowicz Bastos, D. H., Moita-Neto, J. M., Sobral Capasso, F. and Ferraz da Silva Torres, E. A. 2013. Antioxidant Potential of Tomatoes Cultivated in Organic and Conventional Systems. Braz. Arch. Biol. Technol., 56(4): 521-529.
8. Brandt, S., Pek, Z., Barna, E., Lugasi, A. and Helyes, L. 2006. Lycopene Content and Color of Ripening Tomatoes as Affected by Environmental Conditions. J. Sci. Food Agri., 86:568-572
9. Caralampides, L. 2012. Effect of Different Fertilization Levels on Yield and Lycopene Content of Field Tomatoes. M. Sc. Thesis. p. 1-124. McGill University Sainte-Anne-de-Bellevue. Québec. Canada.
10. De Ketelaere, B., Lammertyn, J., Molenberghs, G., Desmet, M., Nicolai, B. and De Baerdemaeker, J. 2004. Tomato Cultivar Grouping Based on Firmness Change, Shelf Life and Variance during Postharvest Storage. Postharvest Biol Technol., 34: 187-201
11. Dell Inc. (2016). Dell Statistica (data analysis software system), version 13. software.dell.com.
12. Di Cesare, L. F., Migliori, C., Viscardi, D., Parisi, M. 2010. Quality of Tomato Fertilized with Nitrogen and Phosphorous. Ital. J. Food Sci., 2(22):186-190
13. Direkvandi, S. N., Ansari, A., Dehcoride, F. S. 2008. Effect of Different Nitrogen Fertilizer with Two Types of Bio-fertilizer o Growth and Yield of Two Cultivars of Tomato (Lycopersicum esculentum Mill). Asian J. Plant Sci., 7(8):757-761.
14. Eberhardt, M. V., Lee, Ch. Y., Liu, R. 2002. Antioxidant Activity of Fresh Apples. Nature., 405: 903-904.
15. Elia, A., Conversa, G., Trotta, G., Rinaldi, M. 2007. Organic Fertilization on Soil Water Content, Yield and Quality of Processing Tomato. Acta Hort., 758:339-343.
16. Elkner, K., Kaniszewski, S. 1995. Effect of Drip Irrigation and Mulching on Quality of Tomato Fruits. Acta Hort., 379:175-180.
17. Elkner, K.. Kaniszewski, S.. Dyśko, J. 2004. Effect of Fertigation on the Content of Ascorbic Acid. Carotenoids and Dietary Fiber in Tomato Fruits. Vegetable Crop. Res. Bull., 61:69-77.
18. El-Mergawi, R. A. Al-Redhaiman, K. N.. Abouziena, H. F. 2014. Comparison of Antioxidant Activity and Antioxidant Components in Lettuce. Onion and Tomato Obtained with Different Levels and Forms of Nitrogen Fertilization. J. Agric. Sci. Technol. A., 4:597-604
19. Etebu, E.. Nwauzoma, A. B.. Bawo, D. D. S. 2013. Postharvest Spoilage of Tomato (Lycopersicon esculentum Mill.) An Control Strategies in Nigeria. J. Biol. Agric. Healthcare., 10 (3): 51 – 60.
20. Frias-Moreno, N.. Nuñez-Barrios, A.. Perez-Leal, R.. Gonzalez-Franco, A. C.. Hernandez-Rodriguez, A.. Robles-Hernandez, L.. 2014: Effect of Nitrogen Deficiency and Toxicity in Two Varieties of Tomatoes (Lycopersicum esculentum L.). Agric. Sci., 5:1361-1368.
21. Genanew, T.. 2013. Effect of Post Harvest Treatments on Storage Behavior and Quality of Tomato Fruits. World J. Agric. Sci., 9 (1): 29-37.
22. Iqbal, M.. Niamatullah, M.. Yousaf, I.. Munir, M.. Khan, M. Z. 2011: Effect of Nitrogen and Potassium on Growth. Economical Yield and Yield Components of Tomato. Sarhad J. Agric., 27(4): 545-548.
23. ISO 6557-2. 1984. Fruits. Vegetables and Derived Products. Determination of Ascorbic Acid Content. Part 2.
24. Javaria, S.. Khan, M. Q.. Bakhsh, I. 2012. Effect of Potassium on Chemical and Sensory Attributes of Tomato Fruit. J. Anim. Plant Sci.., 22(4): 1081-1085.
25. Kaniszewski, S. Rumpel, J. 1983. Effect of Nitrogen Fertilization on Yield, Nutrient Status and Quality of Tomatoes under Single and Multiple Harvest. Biul. Warz., Supplement: 19-29.
26. Kaniszewski, S. Elkner, K. Rumpel, J. 1987. Effect of Nitrogen Fertilization and Irrigation on Yield. Nitrogen Status in Plants and Quality of Fruits of Direct Seeded Tomatoes. Acta Hort., 200: 195-202.
27. Klein, D. Kumar, R. Köpke, U. 2005. Influence of Management Practices on Quality and Biodiversity of Tomatoes in Germany. Researching Sustainable Systems – International Scientific Conference on Organic Agriculture. Adelaide Australia. Sept. 21-23. pp. 4.
28. Kobryń, J. Hallmann, E. 2004. The Effect of Nitrogen Fertilization on the Three Tomato Types Cultivated on Rockwool. Acta Hort., 691: 341-348.
29. Lee, Y., Howard, L. R.. Villaón, B. 1995. Flavonoids and Antioxidant Activity of Fresh Pepper (Capsicum annuum) Cultivars. J. Food Sci., 60: 473-476.
30. Luthria, D. L. Mukhopadhyaya, S. Krizek, D. T. 2006. Content of Total Phenolics and Phenolic Acids in Tomato (Lycopersicon esculentum Mill.) Fruits as Influenced by Cultivar and Solar UV Radiation. J. Food Compos. Anal., 19: 771–777.
31. Montagu, K. D., Goh, K. M. 1990. Effects of Forms and Rates of Organic and Inorganic Nitrogen Fertilizers on the Yield and Some Quality Indices of Tomatoes (Lycopersicon esculentum Mill.). New Zealand J. Crop Hortic. Sci., 18:31-37.
32. Mujtaba, A., Masud, T. 2014. Enhancing Post Harvest Life of Tomato (Lycopersicon esculentum Mill.) Cv. Rio Grandi Using Calcium Chloride. American-Eurasian J. Agric. Environ. Sci., 14 (2): 143-149.
33. Ortas, I. 2013. Influences of Nitrogen and Potassium Fertilizer Rates on Pepper and Tomato Yield and Nutrient Uptake Under Field Conditions. Academic J., 8(23):1048-1055.
34. Ozores-Hampton, M., Simonne, E., Roka, F., Morgan, K., Snodgrass, C., McAvoy, E. 2012. Nitrogen Rates Effects on the Yield. Nutritional Status, Fruit Quality, and Profitability of Tomato Grown in the Spring with Subsurface Irrigation. Hort. Sci., 47(8):1129-1135.
35. Qi, H. Y., Li, T. L., Zhou, X., Fu, H. D. 2005. Effects of Different Nitrogen and Potassium Levels on Yield. Quality and Sucrose Metabolism of Tomato. Chinese Agric., 21: 251-255.
36. Raffoa, A., La Malfab, G., Foglianoc, V., Maiania, G., Quagliaa, G. 2006. Seasonal Variations in Antioxidant Components of Cherry Tomatoes (Lycopersicon esculentum cv. Naomi F1). J. Food Compos. Analysis., 19:11-19.
37. Sainju, U. M., Dris, R., Singh, B. 2003. Mineral Nutrition of Tomato. Food Agric. Environ., 1(2): 176-183.
38. Sams, C. E. 1999. Preharvest Factors Affecting Postharvest Texture. Postharvest Biol. Techno., 15: 249-254.
39. Saniewski, M., Czapski, J. 1983. The effect of methyl jasmonate on lycopene and beta - carotene accumulation in ripening red tomatoes. Experientia., 39:1373-1374.
40. Shinohara, Y., Suzuki, Y., Shibuya, M., Muneteru Yamamoto, M., Yamasaki, K. 2007. Effects of Fertilization and Foliar Spray Treatment on the Ascorbic Acid Content of Tomato and Sweet Pepper. J. Jpn. Soc. Hortic. Sci., 49(1):85-92.
41. Somers, G. F., Kelly, W. C., Hamner, K. C. 1951. Influence of Nitrate Supply Upon the Ascorbic Acid Content of Tomatoes. Am. J. Bot., 38(6): 472-475.
42. Stefanelli, D., Goodwin. I., Jones. R., 2010. Minimal Nitrogen and Water Use in Horticulture: Effects on Quality and Content of Selected Nutrients. Food Res. Int., 43:1833-1843.
43. Tomato Guidance Document. 2nd Edition, 2008,https://www.fda.gov/downloads/Food/GuidanceRegulation/UCM171708.pdf
44. Umiel, N., Gabelman, W. H. 1971. Analytical Procedures for Detecting Carotenoids of Carrot (Daucus carota L.) Roots and Tomato (Lycopersicon esculentum) fruits. J. Amer. Soc. Hort. Sci., 96:702-704.
45. Verma, S., Sharma A., Kumar R., Kaur Ch., Arora A., Shah R., Nain L. 2015. Improvement of Antioxidant and Defense Properties of Tomato (var. Pusa Rohini) by Application of Bioaugmented Compost. Saudi J. Biol. Sci. 22: 256-264.
46. Vinha, A., F.. Barreira, S. V. P., Castro, A., Costa, A., Oliveira, M. B. P. P. 2013. Influence of the Storage Conditions on the Physicochemical Properties, Antooxidant Activity and Microbial Flora of Different Tomato ((Lycopersicon esculentum L.) Cultivars. J. Agr. Sci. 5 (2): 118-128.
47. Viskelis, P., Jankanuskiene, J., Bobinaite, R. 2008. Content of Carotenoids and Physical Properties of Tomatoes Harvested at Different Ripening Stages. Foodbalt. 3rd Baltic Conference on Food Science and Technology. Jelgava. Latvia: 166-170
48. Vinson, J. A., Hao, Y., Su, X. and Zubik, L. 1998. Phenol Antioxidant and Quality in Foods: Vegetables. J. Agric. Food Chem., 46:3630-3634.
49. Warner, J., Zhang, T. Q., Hao X. 2006. Effects of Nitrogen Fertilization on Fruit Yield and Quality of Processing Tomatoes. Can. J. Plant Sci., 84(3):865-871.
50. Zhang, E., Duan, Y., Tan, F., Zhang, S. 2016. Effects of Long-term Nitrogen and Organic Fertilization on Antioxidants Content of Tomato Fruits. J. Hortic., 3:172.
51. Zhishen, J., Mengcheng, T., Jianming, W. 1999. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chemistry. 64:555-559.