Genetic Diversity Analysis of Red Clover (Trifolium pratense L.) in Iran Using Sequence Related Amplified Polymorphism (SRAP) Markers

Authors
1 Department of Biology, Faculty of Science, University of Isfahan, P. O. Box 73441-81746, Isfahan, Islamic Republic of Iran.
2 Research Institute of Forests and Rangelands, Department of Botany, P. O. Box 13185-116, Tehran, Islamic Republic of Iran.
Abstract
Progress in plant breeding requires a broad genetic basis. Knowledge of genetic diversity in cultivated species and their wild relatives is of critical importance for breeding purposes. The red clover, T. pratense,grows wildly in Iran in a vast range of habitats, mainly along the Zagros and Alborz Mountains. Despite being economically important in many other countries, information regarding the genetic diversity of this species in Iran is significantly lacking. In this study, the genetic diversity of 56 genotypes of red clover collected from Iran and one genotype of T. diffusum, used as outgroup, was evaluated using nine SRAP markers. The nine SRAP primer combinations created a total of 294 bands from DNA of 57 genotypes, from which 291 (98.9%) were polymorphic. All the measured parameters showed significantly high genetic diversity in the Iranian genepool of T. pratense with no clear geographic partitioning of genotypes. However, genotypes collected from around Tehran, Isfahan, and Kermanshah-Hamedan were loosely clustered with their co-regional genotypes. Based on the results of the STRUCTURE analysis, genotypes were genetically divided into two clusters, but these were not correlated with the eco-geographical groups. There was no correlation between genetic distance and geographic distance of genotypes. The result of this study showed value in sampling the Iranian genepool of the red clover, with the Western and the Northwestern genepools in more depth, for conservation and breeding purposes.

Keywords


1. Aghaei, Z., Talebi, M. and Rahimmalek, M. 2015. Assessment of Genetic Diversity within and among Sage (Salvia) Species Using SRAP Markers. Plant Genet. Resour., DOI: http://dx.doi.org/10.1017/ S1479262115000593.
2. Ahmad, R., Quiros, C. F., Rahman, H. and Swati, Z. A. 2014. Genetic Diversity Analyses of Brassica napus Accessions Using SRAP Molecular Markers. Plant Genet. Resour., 12(10): 14-21.
3. Ariss, J. and Vandemark, G. 2007. Assessment of Genetic Diversity Among Nondormant and Semidormant Alfalfa Populations Using Sequence Related Amplified Polymorphisms. Crop Sci., 47: 2274–2284.
4. Bundesamt fur Statistik. 2004. Statistical Yearbook of Switzerland 2004. Neue Zürcher Zeitung, Zurich.
5. Campos-de-Quiroz, H. and Ortega-Klose, F. 2001. Genetic Variability among Elite Red Clover (Trifolium pratense L.) Parents Used in Chile as Revealed by RAPD Markers. Euphytica, 122: 61-67.
6. Cai, X., Feng, Z., Zhang, X., Xu, W., Hou, B. and Ding, X. 2011. Genetic Diversity and Population Structure of an Endangered Orchid (Dendrobium loddigesii Rolfe) from China Revealed by SRAP Markers. Sci. Horti., 129: 877-881.
7. Crampton, B. 1985. Native Range Clovers. In: “Clover Science and Technology”, (Ed.): Taylor, N. L. American Society of Agronomy, Madison, WI, USA, PP. 579–590.
8. De Lucas, J. A., Forster, J. W., Smith, K. F. and Spangenberg, G. C. 2012. Assessment of Gene Flow in White Clover (Trifolium repens L.) under Field Conditions in Australia Using Phenotypic and Genetic Markers. Crop Pasture Sci., 63: 155–163.
9. Dias, P. M. B., Julier, B., Sampoux, J. P., Barre, P. and Dall’Agnol, M. 2008. Genetic Diversity in Red Clover (Trifolium pratense L.) Revealed by Morphological and Microsatellite (SSR) Markers. Euphytica, 160: 189-205.
10. Earl, D. A. and Vonholdt, B. M. 2012. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour., 4: 359-361.
11. Ellison, N. W., Liston, A., Steiner, J. J. and Williams, W. M., Taylor, N. L. 2006. Molecular Phylogenetics of the Clover Genus Trifolium (Leguminosae). Mol. Phylogen. Evol., 39: 688–705.
12. Esposito, M. A., Martin, E. A., Cravero, V. P. and Cointry, E. 2007. Characterization of Pea Accessions by SRAP’s Markers. Sci. Horti., 113: 329-335.
13. Excoffier, L., Smouse, P. E. and Quattro, J. M. 1992. Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genet., 131(2): 479-491.
14. Falush, D., Stephens, M. and Pritchard, J. K. 2003. Inference of Population Structure Using Multi Locus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genet., 164: 1567–1587.
15. Feng, F., Chen, M., Zhang, D., Sui, X. and Han, S. 2009. Application of SRAP in the Genetic Diversity of Pinus koraiensis of Different Provenances. Afr. J. Biotech., 8: 1000–1008.
16. Gawel, N. J. and Jarret, R. L. 1991. A Modified CTAB Extraction Procedure for Musa and Ipomoea. Plant Mol. Biol. Rep., 9(3): 262–266.
17. Gillett, J. M. and Taylor, N. L. 2001. The World of Clovers. Iowa State University Press, Ames, Iowa, USA, 457 PP.
18. Greene, S. L., Gritsenko, M. and Vandemark, G. 2004. Relating Morphologic and RAPD Marker Variation to Collection Site Environment in Wild Populations of Red Clover (Trifolium pratense L.). Genet. Resour. Crop Evol., 51: 643-653.
19. Heller, D. 1984. Trifolium. In: “Flora Iranica”, (Ed.): Rechinger, K. H. Akademische Druck-u, Verlagsanstalt Graz-Austria, 157: 275-325.
20. Herrmann, D., Boller, B., Widmer, F. and Kölliker, R. 2005. Optimization of Bulked AFLP Analysis and Its Application for Exploring Diversity of Natural and Cultivated Populations of Red Clover. Genome, 48: 474-486.
21. Hüsken, A. and Dietz-Pfeilstetter, A. 2007. Pollen-Mediated Intraspecific Gene Flow from Herbicide Resistant Oilseed Rape (Brassica napus L). Transgen. Res., 16: 557–569.
22. Jaccard, P. 1908. Nouvelles Recherches sur la Distribution Florale. Bull. Soc. Vaud. Sci. Nat., 44: 223–270. (Cited and Implemented in NTSYSpc Program, Version 2.02e)
23. Jakobsson, M. and Rosenberg, N. A. 2007. CLUMPP: A Cluster Matching and Permutation Program for Dealing with Label Switching and Multimodality in Analysis of Population Structure. Bioinforma., 14: 1801–1806.
24. Kolliker, R., Herrmann, D., Boller, B. and Widmer, F. 2003. Swiss Mattenklee Landraces, a Distinct and Diverse Genetic Resource of Red Clover (Trifolium pratense L.). Theor. Appl. Genet., 107: 306–315.
25. Kongkiatngam, P., Waterway, M. J., Fortin, M. G. and Coulman, B. E. 1995. Genetic Variation within and between two Cultivars of Red Clover (Trifolium pratense L.): Comparisons of Morphological, Isozyme, and RAPD Markers. Euphytica, 84: 237-246.
26. Kouame, C. N. and Quesenberry, K. H. 1993. Cluster Analysis of a World Collection of Red Clover Germplasm. Genet. Resour. Crop Evol., 40: 39-47.
27. Li, G. and Quiros, C. F. 2001. Sequence Related Amplified Polymorphism (SRAP), a New Marker System Based on a Simple PCR Reaction: Its Application to Mapping and Gene Tagging in Brassica. Theor. Appl. Genet., 103: 455-461.
28. Liu, K. and Muse, S. V. 2005. PowerMarker: Integrated Analysis Environment for Genetic Marker Data. Bioinforma., 21: 2128–2129.
29. Maghsoudi Kelardashti, H., Rahimmalek, M. and Talebi, M. 2015. Genetic Diversity in Iranian Fennel (Foeniculum vulgare Mill.) Populations Based on Sequence Related Amplified Polymorphism (SRAP) Markers. J. Agr. Sci. Tech., 17: 1789–1803.
30. Mansour, E., Ben Khaled, A., Triki, T., Abid, M., Bachar, K. and Ferchichi, A. 2015. Evaluation of Genetic Diversity among South Tunisian Pomegranate (Punica granatum L.) Accessions Using Fruit Traits and RAPD Markers. J. Agr. Sci. Tech. 17: 109-119.
31. Mantel, N. 1967. The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Res., 27: 209-220.
32. Mosjidis, J. A. and Klingler, K. A. 2006. Genetic Diversity in the Core Subset of the US Red Clover Germplasm. Crop Sci., 46: 758-762.
33. Mosjidis, J. A., Greene, S. L., Klingler, K. A. and Afonin, A. N. 2004. Isozyme Diversity in Wild Red Clover Populations from the Caucasus. Crop Sci., 44(2): 665-670.
34. Mousavifard, S. S., Saeidi, H., Rahiminejad, M. R. and Shamsadini, M. 2015. Molecular Analysis of Diversity of Diploid Triticum Species in Iran Using ISSR Markers. Genet. Resour. Crop Evol., 62: 387–394.
35. Mukhina, N. A., Khoroshailov, N. G., Kolomiets, T. A. and Stankevich, A. K. 1993. Flora of Cultivated Plants. XIII. Perennial Leguminous Grasses (Clover, Birdsfoot Trefoil). Kolos, Moscow, 336 PP.
36. Nei, M. 1973. Analysis of Gene Diversity in Subdivided Populations. Proc. Natal Acad. Sci. USA, 70: 3321-332.
37. Nei, M. and Li, W. H. 1979. Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases. Proc. Natal Acad. Sci. USA, 76: 5269– 5273. (Cited and Implemented in NTSYSpc, Version 2.02e)
38. Pagnotta, M. A., Annicchiarico, P., Farina, A. and Proietti, S. 2011. Characterizing the Molecular and Morphophysiological Diversity of Italian Red Clover. Euphytica, 179: 393–404.
39. Peakall, R. and Smouse, P. E. 2006. GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Note., 6: 288–295.
40. Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genet., 155: 945–959.
41. Rohlf, F. J. 2000. NTSYS pc: Numerical Taxonomy and Multivariate Analysis System User Guide. New York University, New York.
42. Rosenberg, N. A. 2004. DISTRUCT: A Program for the Graphical Display of Population Structure. Mol. Ecol. Note., 4: 137–138.
43. Run-Fang, L., Rong-kui, H., Rui-ning, D., Ming-Li, C. and Yan, L. 2010. Genetic Diversity of Clover by SRAP. Prata. Sci., 27(12): 53-57.
44. Saeidi, H., Rahiminejad, M. R., Valian, S. and Heslop-Harrison, J. S. 2006. Biodiversity of Diploid D-Genome Aegilops tauschii Coss. in Iran Measured Using Microsatellites. Genet. Resour. Crop Evol., 53: 1477–1484.
45. Semerikov, V. L., Belyaev, A. Y. and Lascoux, M. 2002. The Origin of Russian Cultivars of Red Clover (Trifolium pratense L.) and Their Genetic Relationships to Wild Populations in the Urals. Theor. Appl. Genet., 106: 127–132.
46. St Amand, P. C., Skinner, D. Z. and Peaden, R. N. 2000. Risk of Alfalfa Transgene Dissemination and Scale-Dependent Effects. Theor. Appl. Genet., 101: 107–114.
47. Taylor, N. L. and Quesenberry, K. H. 1996. Red Clover Science. Kluwer Academic Publishers, Netherlands, Dordrecht, 208 PP.
48. Vandemark, G. J., Ariss, J. J., Bauchan, G. A., Larsen, R. C. and Hughes, T. J. 2006. Estimating Genetic Relationships among Historical Sources of Alfalfa Germplasm and Selected Cultivars with Sequence Related Amplified Polymorphisms. Euphytica, 152: 9-16.
49. Van Deynze, A. E., Fitzpatrick, S., Hammon, B., Mc Caslin, M., Putnam, D., Hammon, B., Teuber, L. and Undersander, D. 2008. Gene Flow in Alfalfa: Biology, Mitigation, and Potential Impact on Production. Council for Agricultural Science and Technology Ames, Iowa, USA, 39 PP.
50. Ward, S. 2006. Genetic Analysis of Invasive Plant Populations at Different Spatial scales. Biol. Invas., 8: 541–552
51. Williams, W. M. 1987. Adaptive Variation. In: “White Clover”, (Eds.): Williams, W. M. and Baker, M. J. CAB International Wallingford, Oxon, UK, PP. 299- 323.
52. Woodfield, D. R., Clifford, P. T. P., Baird, I. J. and Cousins, G. R. 1995. Gene Flow and Estimated Isolation Requirements for Transgenic White Clover. In: “Proceedings of the 3rd International Symposium on the Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms”, (Ed.): Jones, D. D. University of California, Oakland, USA, PP. 509–514.
53. Yu, J., Mosjidis, J. A., Klingler, K. A. and Woods, F. M. 2001. Isozyme Diversity in North American Cultivated Red Clover. Crop Sci., 41: 1625-1628.
54. Zohary, M. and Heller, D. 1984. The Genus Trifolium. The Israel Academy of Sciences and Humanities, Jerusalem, Israel, 600 PP.