Trunk Constriction Effects on Vegetative Vigour and Yield Efficiency in Olive Tree (Olea europaea L.)

Authors
Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo 20 Giugno 74, Perugia 06121, Italy.
Abstract
Tree vigour is one of the most important issues in super-high density olive orchards (~1,600 tree ha-1). Tree vigour could be limited by horticultural practices such as pruning and fertilization but such practices have a limited effect and increase growing costs. The aim of this work was to test a new technique based on the application of a constriction to the trunk in order to obstruct the flow of sap in xylem and phloem. To this end, on 5 cultivars trained in a super-high density olive orchard in Central Italy, constrictions were applied by a plastic strap in 2009 and 2010, and were removed at the end of the following year. At the end of the experiment, constricted trees had smaller vegetative growth than the control trees. During the first experiment (2009), in the constriction year, yield efficiency was higher in constricted trees. In the second year, low vigour cultivars (‘Arbequina’, ‘Maurino’ and ‘Moraiolo’) had a consistent reduction of yield, while vigorous cultivars (‘Leccino’ and ‘Frantoio’) had similar yield but a slightly increased yield efficiency. No effect was detected in fruit characteristics, but the oil phenol content was higher in the constricted trees. In the second year experiment (2010), similar results were obtained, but yield efficiency increase and vegetative growth reduction were lighter because the trees were one year older than those of 2009 experiment. Trunk constriction was a successful technique for reducing tree vigour and enhancing tree yield efficiency, especially in vigorous cultivars.

Keywords


1. Aganchich, B., Tahi, H., Wahbi, S., Elmodaffar, C. and Serraj, R. 2007. Growth, Water Relations and Antioxidant Defence Mechanisms of Olive (Olea europaea L.) Subjected to Partial Root Drying (PRD) and Regulated Deficit Irrigation (RDI). Plant Biosyst., 141: 252-264.
2. Atkinson, C. J., Else, M. A., Taylor, L. and Dover, C. J. 2003. Root and Stem Hydraulic Conductivity as Determinants of Growth Potential in Grafted Trees of Apple (Malus pumila Mill.). J. Exp. Bot., 54: 1221-1229.
3. Basile, B., Marsal, J., Solari, L.I., Tyree, M. T., Bryla, B. R. and DeJong, T. M. 2003. Hydraulic Conductance of Peach Trees on Rootstocks with Differing Size-Controlling Potential. J. Hortic. Sci. Biotech., 78: 768-774.
4. DeJong, T. M., Johnson, R. S., Doyle, J. F., Weibel, A., Solari, L., Marsal, J., Basile, B., Ramming, D. and Bryla, D. 2004. Growth, Yield and Physiological Behavior of Size-Controlling Peach Rootstocks Developed in California. Acta Hortic., 658: 449-455.
5. Ellmore, G. S. and Ewers, F. W. 1985. Hydraulic Conductivity in Trunk Xylem of Elm, Ulmus americana. Internat. Ass. Wood Anat. Bull., 6: 302-307.
6. Farinelli, D. and Tombesi, S. 2015. Performance and Oil Quality of ‘Arbequina’ and Four Italian Olive Cultivars under Super High Density Hedgerow Planting System Cultivated in Central Italy. Scientia Hortic., 192: 97-107.
7. Fernandez, J. E., Dıaz-Espejo, A.J., Infante, M., Duran, P., Palomo, M. J., Chamorro, V., Giron, I. F. and Villagarcıa, L. 2006. Water Relations and Gas Exchange in Olive Trees under Regulated Deficit Irrigation and Partial Root Zone Drying. Plant Soil, 284: 273-291.
8. Godini, A., Vivaldi, G. A. and Camposeo, S. 2009. Olive Cultivars Field-tested in Super-high-density System in Southern Italy. Cal. Agr., 65: 39-40.
9. Gomez del Campo, M. 2013. Summer Deficit Irrigation in Hedgerow Olive Orchard cv. Arbequina: Relationship between Soil and Tree Water Status, and Growth and Yield Components. Span. J. Agr. Res., 11: 547-557.
10. Grossman, Y. L. and DeJong, T. M. 1994. PEACH: A Simulation Model of Reproductive and Vegetative Growth in Peach Trees. Tree Physiol., 14: 329-345.
11. Hartmann, H. T. and Whishler, J. E. 1970. Some Rootstock and Interstock Influences in Olive (Olea europaea L.) cv. Sevillano. J. Am. Soc. Hortic. Sci., 95: 562-565.
12. Hartmann, H. T. 1950. The Effect of Girdling on Flower Type, Fruit Set, and Yields in the Olive. Proc. Am. Soc. Hortic. Sci., 56: 217-226.
13. Hasegawa, K. and Nakajima, Y. 1992. Effects of Girding and Strapping of Lateral Branches on Fruit Growth in Persimmon cv. Nishimurawase. Bull. Fac. Agric. Kochi Univ., 41: 39-45.
14. Larsen, F. E., Higgins, S. S. and Fritts, Jr. R. 1987. Scion/Interstock/Rootstock Effect on Sweet Cherry Yield, Tree Size and Yield Efficiency. Sci. Hortic., 33: 237-247.
15. Larsen, F. E., Higgins, S. S. and Dolph, C. A. 1992. Rootstock Influence over 25 Years on Yield, Yield Efficiency and Tree Growth of Cultivars "Delicious' and 'Golden Delicious' Apple (Malus domestica Borkh. ). Sci. Hortic., 49: 63-70.
16. Lavee, S., Haskal, A. and Ben Tal, Y. 1983. Girdling Olive Trees, a Partial Solution to Biennal Bearing. I. Methods, Timing and Direct Tree Response. J. Hortic. Sci., 58: 209-218.
17. Lavee, S., Hanoch, E., Wodner, M. and Abramowitch, H. 2007. The Effect of Predetermined Deficit Irrigation on the Performance of cv. Muhasan Olives (Olea europaea L.) in the Eastern Coastal Plain of Israel. Sci. Hortic., 112: 156-163.
18. Leonardi, J., Blaikie, S.J., Muller, W.J., Steele Scott, N. and Chacko, E. K. 1999. Effect of Cincturing and Chemical Treatments on Growth, Flowering and Yield of Mango (Mangifera indica L.) cv. Kensington Pride. Aust. J. Exp. Agr., 39: 761-770
19. Loewus, F. A. 1952. Improvement in Anthrone Method for Determination of Carbohydrates. Anal. Chem., 24: 219-219
20. Lopez-Bernal, A., Alcantara, E., Testi, L., Villalobos, F.J., 2010. Spatial SapF and Xylem Anatomical Characteristics in Olive Trees under Different Irrigation Regimes. Tree Physiol., 30: 1536-1544.
21. Meilan, R. 1997. Floral Induction in Woody Angiosperms. J. New For., 14: 179-202.
22. Morris, D. L. 1948. Quantitative Determination of Carbohydrates with Drewood’s Anthrone Reagent. Science, 107: 254-255.
23. Motisi, A., Pernice, F., Sottile, F. and Caruso, T. 2004. Rootstock Effect on Stem Water Potential Gradients in cv. ‘Armking’ Nectarine Trees. Acta Hortic., 658: 75-79.
24. Nardini, A., Gascò, A., Raimondo, F., Gortan, E., Lo Gullo, M. A., Caruso, T. and Salleo, S. 2006. Is Rootstock-induced Dwarfing in Olive an Effect of Reduced Plant Hydraulic Efficiency? Tree Physiol., 26: 1137-1144.
25. Poni, S., Tagliavini, M., Neri, D., Scudellari, D. and Toselli, M. 1992. Influence of Root Pruning and Water Stress on Growth and Physiological Factors of Potted Apple, Grape, Peach and Pear Trees. Sci. Hortic., 52: 223-236.
26. Porlingis, I. C. and Voyiatzis, D. G. 1986. Influence of Paclobutrazol Plant Growth Regulator on Vegetative and Reproductive Growth of Olive (Olea europaea L.). Acta Hortic., 179: 587-588.
27. Richards, D. and Rowe, R. N. 1977. Effects of Root Restriction, Root Pruning and 6-Benzylamminopurine on the Growth of Peach Seedlings. Ann. Bot., 41: 729-740.
28. Sansavini, S., Bassi, D. and Giunchi, L. 1981. Tree Efficiency and Fruit Quality in High Density Apple Orchards. Acta Hortic., 114: 114-136.
29. Schneider, D., Goldway, M., Birger, R. and Stern, R. A. 2012. Does Alteration of ‘Koroneiki’ Olive Tree Architecture by Uniconazole Affect Productivity? Sci. Hortic., 139: 79-85.
30. Solari, L. I., Johnson, R. S. and DeJong, T. M. 2006a. Relationship of Water Status to Vegetative Growth and Leaf Gas Exchange of Peach (Prunus persica) Trees on Different Rootstocks. Tree Physiol., 26: 1333-1341.
31. Solari, L. I., Johnson, R. S. and DeJong, T. M. 2006b. Hydraulic Conductance Characteristics of Peach (Prunus persica) Trees on Different Rootstocks Are Related to Biomass Production and Distribution. Tree Physiol., 26: 1343-1350.
32. Tombesi, A. 1988. Intercettazione Luminosa ed Efficienza Produttiva Dell’olivo. Frutticoltura, 3: 21-25.
33. Tombesi, S., Johnson, S. R., Day, K. R. and DeJong, T. M. 2010a. Relationships between Xylem Vessel Characteristics, Calculated Axial Hydraulic Conductance and Size-controlling Capacity of Peach Rootstocks. Ann. Bot., 105: 327-331.
34. Tombesi, S., Johnson, S. R., Day, K. R. and DeJong, T. M. 2010b. Interactions between Rootstock, Inter-stem and Scion Xylem Vessel Characteristics of Peach Trees Growing on Rootstocks with Contrasting Size-controlling Characteristics. AoB Plant., plq013 doi: 10.1093/aobpla/plq013.
35. Tombesi, A. 2011. Intensive vs. Super-high Density Olive Growing Systems. Proc. Olivebioteq., 1: 195-205.
36. Tombesi, S., Almehdi, A. and DeJong, T. M. 2011. Phenotyping Vigour Control Capacity of New Peach Rootstocks by Xylem Vessel Analysis. Sci. Hortic., 127: 353-357.
37. Tombesi , S. and Farinelli, D. 2014a. Evaluation of Canopy Elasticity, Light Penetration and Reciprocal Shading for Optimal Canopy Management in High Density Hedgerow Olive Orchards. Acta Hortic., 1057: 315-320.
38. Tombesi, S. and Farinelli, D. 2014b. Canopy Management in Super High Density Olive Orchards: Relationship between Canopy Light Penetration, Canopy Size and Productivity. Acta Hortic., in press.
39. Tombesi, S. Farinelli, D., Molfese, M., Cipolletti, M. and Visco, T. 2014c. Pruning Technique in Young High Density Hedgerow Olive Orchards. Acta Hortic., 1057: 385-390.
40. Tombesi, S., Day, K. R., Johnson, R.S., Phene, R. and DeJong, T. M. 2014d. Vigour Reduction in Girdled Peach Trees Is Related to Lower Midday Stem Water Potentials. Funct. Plant Biol., 41: 1336-1341.
41. Tous, J., Romero, A., Plana, J. and Baiges, F. 1999. High Planting Density Trial on ‘Arbequina’ Olive Cultivar. Acta Hortic., 474: 177-180.
42. Trifilò, P., Lo Gullo, M. A., Nardini, A., Pernice, F. and Salleo, S. 2007. Rootstock Effects on Xylem Conduit Dimensions and Vulnerability to Cavitation of Olea europaea L. Tree., 21: 549-556.
43. Taylor, K. C. 2004. Cable-Tie Girdling of Peach Trees Approximates Standard Girdling Results. J Am. Pom. Soc., 58: 210-214.
44. Weber, M. S. 2001. Optimizing the Tree Density in Apple Orchards on Dwarf Rootstocks. Acta Hortic., 557: 229-234
45. Wheaton, T. A., Whitney, J. D., Castle, W. S., Muraro, R. P., Browning, H. W. and Tucker, D. P. H. 1995. Citrus Scion and Rootstock, Topping Height, and Tree Spacing Affect Tree Size, Yield, Fruit Quality and Economic Return. J. Am. Soc. Hortic. Sci., 120: 861-870.