How Different Populations and Host Plant Cultivars Affect Two-Sex Life Table Parameters of the Date Palm Hopper, Ommatissus lybicus (Hemiptera: Tropiduchidae)

Authors
1 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Islamic Republic of Iran.
2 Department of Plant Protection, Hormozgan Agricultural and Natural Resources Research Center, Bandar-Abbas, Islamic Republic of Iran.
3 Department of Genomics, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Islamic Republic of Iran.
Abstract
Worldwide distribution of the Date Palm Hopper (DPH), Ommatissus lybicus de Bergevin along with intensive regional chemical and cultural practices to control this pest provide a basis for development of high genetic divergence. This genetic divergence can result in demographically distinct populations. In this study, the demographic parameters of three genetically diverged Iranian populations of DPH (Bam, Jiroft, and Tezerj) were determined on two date palm cultivars (Berhi and Khunizi). The age-stage, two-sex life table theory was used to unveil biological differences among these populations. All experiments were carried out in a laboratory at 27±2˚C, 65±5% RH, and a photoperiod of 14:10 (L: D) hour. The results revealed significant differences in life history traits and growth parameters of different populations. The shortest development time was observed in the Bam population (75.86 and 85.03 days on Berhi and Khunizi, respectively). The highest values of the intrinsic rate of increase (r) and finite rate of increase (λ) were detected in Bam population (0.0377 and 1.0433 per day on Berhi as well as 0.0284 and 1.0288 per day on Khunizi, respectively). Based on these results, we can consider Bam as an aggressive population with higher infestation rate compared with the other populations due to its higher r and λ values as well as shorter mean generation time on both host cultivars. The significant differences in life history traits and variation in population growth parameters may suggest the presence of cryptic species among these populations. It can stem from the high genetic divergence among DPH populations which may be orchestrated by mismanagement of the pest.

Keywords


1. Ahantarig, A. and Kittayapong, P. 2011. Endosymbiotic Wolbachia Bacteria as Biological Control Tools of Disease Vectors and Pests. J. Appl. Entomol., 135: 479-486.
2. Benvenuto, C., Tabone, E., Vercken, E., Sorbier, N., Colombel, E., Warot, S., Fauvergue, X. and Ris, N. 2012. Intraspecific Variability in the Parasitoid Wasp Trichogramma chilonis: Can We Predict the Outcome of Hybridization. Evol. Appl., 5: 498-510.
3. Cifuentes, D., Chynoweth, R. and Bielza, P. 2011. Genetic Study of Mediterranean and South American Populations of Tomato Leaf Miner Tuta absoluta (Povolny 1994) (Lepidoptera: Gelechidae) Using Ribosomal and Mitochondrial Markers. Pest. Manag. Sci., 67: 1155–1162.
4. Chi, H. 1988. Life-table Analysis Incorporating Both Sexes and Variable Development Rates among Individuals. Environ. Entomol., 17: 26–34.
5. Chi, H. 2015. TWOSEX-MS Chart: A Computer Program for the Age-stage, Two Sex Life Table Analysis. Available from: http://140.120.197.173/Ecology/Download/TwosexMS Chart.zip. (Accessed: 25 October 2015).
6. Chi, H. and Liu, H. 1985. Two New Methods for the Study of Insect Population Ecology. Bull. Inst. Zool. Acad. Sin., 24: 225–240.
7. Chi, H. and Su, H. Y. 2006. Age-Stage, Two-sex Life Tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and Its Host Myzus persicae (Sulzer) (Homoptera: Aphididae) with Mathematical Proof of the Relationship between Female Fecundity and the Net Reproductive Rate. Environ. Entomol., 35: 10–21.
8. Efron, B. and Tibshirani, R. J. 1993. An Introduction to the Bootstrap. Chapman and Hall, New York.
9. Ellers, J. and Boggs, C. L. 2004. Functional Ecological Implications of Intraspecific Differences in Wing Melanization in Colias Butterflies. Biol. J. Linn. Soc., 82: 79-87.
10. Golizadeh, A., Kamali, K., Fathipour, Y. and Abbasipour, H. 2009a. Effect of Temperature on Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae) on Two Brassicaceous Host Plants. J. Asia–Pac. Entomol., 17: 837-844.
11. Golizadeh, A., Kamali, K., Fathipour, Y. and Abbasipour, H. 2009b. Life Table of the Diamondback Moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on Five Cultivated Brassicaceous Host Plants. J. Agr. Sci. Tech., 12: 207–212.
12. Goodarzi, M., Fathipour, Y. and Talebi, A. A. 2015. Antibiotic Resistance of Canola Cultivars Affecting Demography of Spodoptera exigua (Lepidoptera: Noctuidae). J. Agr. Sci. Tech., 17: 23-33.
13. Goodman, D. 1982. Optimal Life Histories, Optimal Notation, and the Value of Reproductive Value. Am. Nat., 119: 803-823.
14. Hoy, M. A. 2003. Insect Molecular Genetics: An Introduction to Principles and Applications. Academic Press. 546 PP.
15. Huang, Y. B. and Chi, H. 2012. Age-Stage, Two sex Life Tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a Discussion on the Problem of Applying Female Age-Specific Life Tables to Insect Populations. Insect Sci., 19: 263-273.
16. Huang, Y. B. and Chi, H. 2013. Life Tables of Bactrocera cucurbitae (Diptera: Tephritidae) with an Invalidation of the Jackknife Technique. J. Appl. Entomol., 137: 327-339.
17. Ito, K., Nishikawa, H., Shimada, T., Ogawa, K., Minamiya, Y., Tomoda, M., Nakahira, K., Kodama, R., Fukuda, T. and Arakawa, R. 2011. Analysis of Genetic Variation and Phylogeny of the Predatory Bug, Pilophorus typicus, in Japan Using Mitochondrial Gene Sequence. J. Insect Sci., 11: 18.
18. Khanamani, M., Fathipour, Y. and Hajiqanbar, H. 2013. Population Growth Response of Tetranychus urticae to Eggplant Quality: Application of Female Age-Specific and Age-Stage, Two-sex Life Tables. Int. J. Acarol., 39: 638-648.
19. Khanamani, M., Fathipour Y. and Hajiqanbar, H. 2015. Assessing Compatibility of the Predatory Mite Typhlodromus bagdasarjani (Acari: Phytoseiidae) and Resistance Eggplant Cultivar in a Tritrophic System. Ann. Entomol. Soc. Am., 108: 501-512.
20. Lemos-espinal, J. A., Smith, G. R. and Ballinger, R. E. 2003. Variation in Growth and Demography of a Knob-Scaled Lizard (Xenosaurus newmanorum: Xenosauridae) from a Seasonal Tropical Environment in Mexico. Biotropica, 35: 240-249.
21. Liu, S. S., Gebremeskel, F. B. and Shi Z. H. 2001. Reproductive Compatibility and Variation in Survival and Sex Ratio between Two Geographic Populations of Diadromus collaris, a Pupal Parasitoid of the Diamondback Moth, Plutella xylostella. Biocontrol, 47: 625-643.
22. Mahmoudi, M., Sahragard, A., Pezhman, H. and Ghadamyari, M. 2015. Demographic Analyses of Resistance of Five Varieties of Date Palm, Phoenix dactylifera L. to Ommatissus lybicus De Bergevin (Hemiptera: Tropiduchidae). J. Agr. Sci. Tech., 17: 263-273.
23. Mezghani, M., Bouktila, D., Kharrat, I., Makni, M. and Makni, H. 2012. Genetic Variability of Green Citrus Aphid Populations from Tunisia, Assessed by RAPD Markers and Mitochondrial DNA Sequences. Entomol. Sci., 15: 171-179.
24. Mokhtar, A. M. and AL Nabhani, S. S. 2010. Temperature-dependent Development of Dubas Bug, Ommatissus lybicus (Hemiptera: Tropiduchidae), an Endemic Pest of Date Palm, Phoenix dactylifera. Europ. J. Entomol., 107: 681-685.
25. Nikooei, M., Fathipour, Y., Javaran, M. J. and Soufbaf, M. 2015. How Different Genetically Manipulated Brassica genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol., 108: 515-524.
26. Papaj, D. R. and Rausher, M. D. 1987. Components of Conspecific Host Discrimination Behavior in the Butterfly Battus philenor. Ecol., 68: 245-253.
27. Payandeh, A., Kamali, K., Fathipour, Y. and Ostovan, H. 2010. Biology and Demography of the Dubas Bug, Ommatissus lybicus (Hemiptera: Tropiduchidae), at Three Constant Temperatures. J. Entomol. Soc. Iran., 29: 31-44. (in Persian with English abstract)
28. Safuraie-Parizi, S., Fathipour, Y. and Talebi, A. A. 2014. Evaluation of Tomato Cultivars to Helicoverpa armigera using Two-Sex Life Table Parameters in Laboratory. J. Asia–Pac. Entomol., 17: 837-844.
29. Shabani, M., Bertheau, C., Zeinalabedini, M., Sarafrazi, A., Mardi, M., Naraghi, S. M., Rahimian, H. and Shojaee, M. 2012. Population Genetic Structure and Ecological Niche Modelling of the Leaf Hopper Hishimonus phycitis. J. Pest. Sci., 86: 173-183.
30. Suman, D. S., Tikar, S. N., Mendki, M. J., Sukumaran, D., Agraval, O. P., Parashar, B. D. and Prakash, S. 2011. Variation in Life Tables of Geographically Isolated Strains of the Mosquito Culex quinquefasciatus. Medical Veter. Entomol., 25: 276-288.
31. Taghizadeh, R., Fathipour, Y. and Kamali, K. 2008. Influence of Temperature on Life-table Parameters of Stethorus gilvifrons (Mulsant) (Coleoptera: Coccinellidae) Fed on Tetranychus urticae Koch. J. Appl. Entomol., 132: 638-645.
32. Takano, S. L., Takaso, K., Murata, M., Huong, N. T. and Nakamura, S. 2013. Comparative Developmental and Reproductive Biology of Geographical Populations from Two Cryptic Species in Brontispa longisimma (Coleoptera: Chrysomelidae). Entomol. Sci., 16: 335-340.
33. Tang, M., Lv, L., Jing, S., Zhu, L. and He, G. 2010. Bacterial Symbionts of the Brown Planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl. Environ. Microb., 76: 1740-1745.
34. Underwood, N. and Rausher, M. D. 2000. The Effects of Host-Plant Genotype on Herbivore Population Dynamics. Ecol., 81: 1565-1576.
35. Yamaguchi, R. and Iwasa, Y. 2013. First Passage Time to Allopatric Speciation. Interface Focus, 3: 20130026.