Antioxidant Defense Response of the Green Peach Aphid, Myzus persicae against Secondary Metabolites of the Host Plants Cumin, Anise, and Coriander

Authors
1 Department of Zoology and Entomology, Faculty of Science, Assiut University, Egypt.
2 Plant Protection Research Institute, Assiut, Egypt.
3 Department of Plant Protection, Faculty of Agriculture, Assiut University, Egypt
Abstract
The green peach aphid, Myzus persicae is a polyphagous herbivore, attacking apiaceae plants which are rich in defensive secondary metabolites. Thus, M. persicae owns a protective antioxidative response to overcome the host defense. The aim of the present study was to investigate the adaptive antioxidative response of M. persicae against the secondary metabolites of cumin, anise, and coriander. The dietary antioxidants, ascorbic acid and glutathione and enzymatic antioxidants, superoxide dismutase, catalase, ascorbate peroxidase and glutathione peroxidase within tissues of M. persicae were measured every two weeks during the infestation season. The obtained results show that Anise could be a good recommended host in the beginning of the infestation season because it confers escalading levels of ascorbic acid. Coriander and cumin could be a second choice. The variable levels of enzymatic antioxidants during the season indicate the adaptive responses of M. persicae against the plant defensive secondary metabolites.

Keywords


1. Aebi, H. 1984. Catalase In vitro. Method. Enzymol., 105: 121–126.
2. Ahmad, S. 1992. Biochemical Defense of Prooxidant Plant Allelochemicals by Herbivorous Insect. Biochem. Syst. Ecol., 20: 269–296.
3. Ahmad, S. and Pardini, R. S. 1990. Mechanisms for Regulating Oxygen Toxicity in Phytophagous Insects. ‎Free Radic. Biol. Med., 8: 401–413.
4. Ananthakrishnan, T. N., Gopichandran, R. and Gurusubvamanian, G. 1992. Influence of Chemical Profiles of Host Plants on the Infestation Diversity of Retithrips syriacus. J. Bio Sci., 17: 483–489.
5. Asada, K. 1984. Chloroplasts: Formation of Active Oxygen Species and Its Scavenging. Method. Enzymol., 105:422–429.
6. Barbehenn, R. V. 2002. Gut-Based Antioxidant Enzymes in a Polyphagous and Graminivorous Grass-hopper. J. Chem. Ecol., 28: 1329–1347.
7. Cabrera-Brandt, M. A., Fuentes-Contreras, E. and Figueroa, C. C. 2010. Differences in the Detoxification Metabolism between Two Clonal Lineages of the Aphid Myzus persicae (Sulze) (Hemiptera: Aphididae) Reared on Tobacco (Nicotiana tabacum L.). Chilean J. Agric. Res., 70: 567–575.
8. Felton, G. W. and Summers, C. B. 1995. Antioxidant Systems in Insects. Arch. Insect Biochem. Physiol., 29: 187–197.
9. Figueroa, C. C., Koenig, C., Araya, C., Santos, M. J. and Niemeyer, H. M. 1999. Effect of DIMBOA, a Hydroxamic Acid from Cereals, on Peroxisomal and Mitochondrial Enzymes from Aphids: Evidence for the Presence of Peroxisomes in Aphids. J. Chem. Ecol., 25: 2465–2475.
10. Francis, F., Lognay, G., Wathelet, J. P. and Haubruge, E. 2002. Characterization of Aphid Myrosinase and Degradation Studies of Glucosinolates. Arch. Insect Biochem. Physiol., 50:173–182.
11. Francis, F., Vanhaelen, N. and Haubruge, E. 2005. Glutathione S-transferases in the Adaptation to Plant Secondary Metabolites in the Myzus persicae Aphid. Arch. Insect Biochem. Physiol., 58: 166–174.
12. George, G. D. and Gatehouse, A. M. R. 2013. Oxidative Stress Enzymes in Busseola fusca. Int. J. Curr. Microbial. App. Sci., 2: 485–495.
13. Griffith, O. W. 1980. Determination of Glutathione and Glutathione Disulfide Using Glutathione Reductase and 2-Vinylpyridine. Anal. Biochem., 106: 207–212.
14. He, C., Meng, Q. K., Yang, X. B. and Hua, L. 2013. Carbohydrate Metabolism and Antioxidant Defense during Diapause Development in Larvae of Oriental Fruit Moth (Grapholita molesta) at Low Temperature. Int. J. Agric. Biol., 15: 101–106.
15. Jena, K., Kar, P. K., Babu, C. S., Giri, S., Singh, S. S. and Prasd, B. C. 2013. Comparative Study of Total Hydroperoxides and Antioxidant Defense System in the Indian Tropical Tasar Silkworm, Antheraea mylitta, in Diapausing and Non-Diapausing Generations. J. insect Sci., 13: 1–11.
16. Kerchev, P. I., Fenton, B., Foyer, C. H. and Hancock, R. D. 2012. Infestation of Potato (Solanum tuberosum L.) by the Peach-potato Aphid (Myzus persicae Sulzer) Alters Cellular Redox Status and Is Influenced by Ascorbate. Plant Cell Environ., 35: 430–40.
17. Krishnan, N., Kodrik, D., Turanli, F. and Sehnal, F. 2007. Stage-specific Distribution of Oxidative Radicals and Antioxidant Enzymes in the Midgut of Leptinotarsa decemlineata. J. Insect Physiol., 53: 67–74.
18. Krishnan, N., Kodrik, D., Kludkiewicz, E. and Sehnal, F. 2009. Glutathione-ascorbic Acid Redox Cycle and Thioredoxin Reductase Activity in the Digestive Tract of Leptinotarsa decemlineata (Say). Insect Biochem. Mol. Biol., 39: 180–188.
19. Lee, K. and Berenbaum, M. R. 1993. Food Utilization and Antioxidant Enzyme Activities of Black Swallowtail in Response to Plant Phototoxins. Arch. Insect Biochem. Physiol., 23: 79–89.
20. Loayza-Muro, R., Figueroa, C. C. and Niemeyer, H. M. 2000. Effect of Two Wheat Cultivars Differing in Hydroxamic Acid Concentration on Detoxification Metabolism in the Aphid Sitobion avenae. J. Chem. Ecol., 26: 1725–2736.
21. Lowry, O. H., Rosebrough, R. T., Farr, A. L. and Randall, R. J. 1951. Protein Measurement with Folin Phenol Reagent. J. Biol. Chem., 193: 265–275.
22. Lukasik, I. 2007. Changes in Activity of Superoxide Dismutase and Catalase within Cereal Aphids in Response to Plant O-dihydroxyphenols. J. Appl. Entomol., 131: 209–214.
23. Lukasik, I. and Golawska, S. 2007. Activity of Se-independant Glutathione Peroxidase and Glutathione Reductase within Cereal Aphid Tissues. Biol. Lett., 4: 31–39.
24. Lukasik, I. and Goławska, S. 2013. Effect of Host Plant on Levels of Reactive Oxygen Species and Antioxidants in the Cereal Aphids Sitobion avenae and Rhopalosiphum padi. Biochem. Syst. Ecol., 51: 232–239.
25. Lukasik, I., Golawska, S. and Wojcicka, A. 2009. Antioxidant Defense Mechanisms of Cereal Aphids Based on Ascorbate and Ascorbate Peroxidase. Biologia, 64: 994–998.
26. Lukasik, I., Golawska, S., Wojcicka, A. and Golawski, A. 2011. Effect of Host Plants on Antioxidant System of Pea Aphid Acyrthosiphon pisum. Bull. Insectol., 64: 153–158.
27. Lukasik, I.; Golawaska, S. and Wojcicka, A. 2012. Effect of Host Plants on Biochemical Markers of Oxidative Stress within Tissues of Pea Aphid. J. Plant Prot. Res., 52: 59–63.
28. Okeri, H. A. and Alonge, P. O. 2006. Determination of the Ascorbic Acid Content of Two Medicinal Plants in Nigeria. Pak. J. Pharm. Sci., 19: 44–48.
29. Omaye, S. T., Turnbull, J. D. and Sauberlich, H. E.1979. Selected Methods for the Determination of Ascorbic Acid in Animal Cells, Tissues and Fluids. Method. Enzymol., 62: 3–11.
30. Pardini, R. S. 1995. Toxicity of Oxygen from Naturally Occurring Redox Active Pro-oxidants. Arch. Insect Biochem. Physiol., 29: 101–118.
31. Peric-Mataruga, V., Blagojevic, D., Spasic, M. B., Ivanovic, J. and Jankovic-Hladni, M. 1997. Effect of the Host Plant on the Antioxidant Defense in the Midgut of Lymantria dispar L. Caterpillars of Different Population Origins. J. Insect Physiol., 43: 101–106.
32. Pritsos, C. A., Ahmad, S., Bowen, S. M., Elliot, A. J., Blomquist, G. J. and Pardini, R. S. 1988. Antioxidant Enzymes of the Black Swallowtail Butterfly, Papilio polyxenes, and Their Response to the Prooxidant Allelochemical, Quercetin. Arch. Insect Biochem. Physiol., 8: 101–112.
33. Ramsey, J. S., Rider, D. S., Walsh, T. K., De Vos, M., Gordon, K. H., Ponnala, L., Macmil, S. L., Roe, B. A. and Jander, G. 2010. Comparative Analysis of Detoxification Enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol. Biol., 2: 155–164.
34. Rup, P. J., Sohal, S. K. and Kaur, H. 2006. Studies on the Role of Six Enzymes in the Metabolism of Kinetin in Mustard Aphid, Lipaphis erysimi (Kalt.). J. Environ. Biol., 27: 579–584.
35. Timmermann, S. E., Zangerl, A. R. and Berenbaum, M. R. 1999. Ascorbic and Uric Acid Responses to Xanthotoxin Ingestion in a Generalist and a Specialist Caterpillar. Arch. Insect Biochem. Physiol., 42: 26–36.
36. Wang, Y., Wang, L. J., Zhu, Z. H., Ma, W. H. and Lei, C. L. 2012. The Molecular Characterization of Antioxidant Enzyme Genes in Helicoverpa armigera Adults and Their Involvement in Response to Ultraviolet: A Stress. J. Insect physiol., 58: 1250–1258.