1. Agarwal, S., Rahman, S. and Errington, A. 2009. Measuring the Determinants of Relative Economic Performance of Rural Areas. J. Rural Stud., 25(3): 309-321.
2. Anandarajan, M., Lee, P. and Anandarajan, A. 2001. Bankruptcy Prediction of Financially Stressed Firms: An Examination of the Predictive Accuracy of Artificial Neural Networks. ISAFM, 10(2): 69-81.
3. Anderson, A. R. and Miller, C. J. 2003. “Class Matters”: Human and Social Capital in the Entrepreneurial Process. J. Socio. Econ., 32(1): 17-36.
4. Beale, M., Hagan, M. T. and Demuth, H. B. 2010. Neural Network Toolbox™ 7 User’s Guid. www.mathworks.com.
5. Brouthers, L. E., Mukhopadhyay, S., Wilkinson, T. J. and Brouthers, K. D. 2009. International Market Selection and Subsidiary Performance: A Neural Network Approach. J. World Bus., 44(3): 262-273.
6. Cao, Y., Chen, X., Wu, D. D. and Mo, M. 2011. Early Warning of Enterprise Decline in a Life Cycle Using Neural Networks and Rough Set Theory. Expert Syst. Appl., 38(6): 6424-6429.
7. Charalambous, C., Charitou, A. and Kaourou, F. 2000. Comparative Analysis of Artificial Neural Network Models: Application in Bankruptcy Prediction. Ann. Oper. Res., 99(4): 403–425.
8. Darroch, M. A. and Clover, T. A. 2005. The Effects of Entrepreneurial Quality on the Success of Small, Medium and Micro Agribusinesses in KwaZulu-Natal, South Africa. Agrekon, 44(3): 321-343.
9. Greiner, M., Pfeiffer, D. and Smith, R. D. 2000. Principles and Practical Application of the Receiver-Operating Characteristic Analysis for Diagnostic Tests. Prev. Vet. Med., 45(1): 23-41.
10. Svendsen, G. L. H., Kjeldsen, C. and Noe, E. 2010. How Do Private Entrepreneurs Transform Local Social Capital into Economic Capital? Four Case Studies from Rural Denmark. J. Socio. Econ., 39(6): 631-644.
11. Guo, W., Xiao, H. and Yang, X. 2012. An Empirical Research on the Correlation between Human Capital and Career Success of Knowledge Workers in Enterprise. Phys. Procedia, 25: 715-725.
12. Javalgi, R. R. G. and Todd, P. R. 2011. Entrepreneurial Orientation, Management Commitment, and Human Capital: The Internationalization of SMEs in India. J. Bus. Res., 64(9): 1004-1010.
13. Jiuju, C. 2013. Modeling and Optimization of Marketing Based on Artificial Neural Network. In: “Information Technology and Industrial Engineering (Set)”, (Eds.): Ren, P. and Du, Z.. WIT Press, UK, PP. 357–364.
14. Kaasa, A. and Parts, E. 2008. Human Capital and Social Capital as Interacting Factors of Economic Development: Evidence from Europe. In Working Paper IAREG WP2/04.
15. Keyvanpour, M. R., Javideh, M. and Ebrahimi, M. R. 2011. Detecting and Investigating Crime by Means of Data Mining: A General Crime Matching Framework. Procedia. Comput. Sci., 3: 872-880.
16. Khataee, A. R. and Kasiri, M. B. 2011. Modeling of Biological Water and Wastewater Treatment Processes Using Artificial Neural Networks. CLEAN–Soil Air Water, 39(8): 742-749.
17. Krishna, A. 2004. Understanding, Measuring and Utilizing Social Capital: Clarifying Concepts and Presenting a Field Application from India. Agric. Syst., 82(3): 291-305.
18. Li-Fang, Q., Yi-Chuan, Z., An-Guo, Q. and Xin-Zheng, L. 2012. Optimizing Rank of Landscape Planning Works of Urban Wetland Park. Northeast Agric. Univ., 19(3): 87-91.
19. Liu, Q., Cui, X., Chou, Y. C., Abbod, M. F., Lin, J. and Shieh, J. S. 2015. Ensemble Artificial Neural Networks Applied to Predict the Key Risk Factors of Hip Bone Fracture for Elders. Biomed. Signal Process. Control, 21: 146-156.
20. Lu, C. J. and Wu, J. Y. 2011. An Efficient CMAC Neural Network for Stock Index Forecasting. Expert Syst. Appl., 38(12): 15194-15201.
21. Magnani, N. and Struffi, L. 2009. Translation Sociology and Social Capital in Rural Development Initiatives. A Case Study from the Italian Alps. J. Rural Stud., 25(2): 231-238
22. Magoulas, G. D., Plagianakos, V. P. and Vrahatis, M. N. 2004. Neural Network-based Colonoscopic Diagnosis Using On-line Learning and Differential Evolution. Appl. Soft Comput., 4(4): 369-379.
23. Martin, B. C., McNally, J. J. and Kay, M. J. 2013. Examining the Formation of Human Capital in Entrepreneurship: a Meta-analysis of Entrepreneurship Education Outcomes. J. Bus. Venturing, 28(2): 211-224.
24. Martin-Collado, D., Soini, K., Mäki-Tanila, A., Toro, M. A. and Díaz, C. 2014. Defining Farmer Typology to Analyze the Current State and Development Prospects of Livestock Breeds: The Avileña-Negra Ibérica Beef Cattle Breed as a Case Study. Livest. Sci., 169: 137-145.
25. Mauerhofer, V. 2008. 3-D Sustainability: An Approach for Priority Setting in Situation of Conflicting Interests towards a Sustainable Development. Ecol. Econ., 64(3): 496-506.
26. Min, J. H. and Lee, Y. C. 2005. Bankruptcy Prediction Using Support Vector Machine with Optimal Choice of Kernel Function Parameters. Expert Syst. Appl., 28(4): 603-614.
27. Nakama, T. 2009. Theoretical Analysis of Batch and On-line Training for Gradient Descent Learning in Neural Networks. Neurocomputing, 73(1): 151-159.
28. Nichter, S., and Goldmark, L. 2009. Small Firm Growth in Developing Countries. World Dev., 37(9): 1453-1464.
29. Nishantha, B. and Kawamura, Y. 2011. The Role of Human and Social Capital on Small Enterprise Growth: Evidence from Sri Lanka. Ryukoku J. Econ. Stud., 51(1): 69-89.
30. Paige, R. C. and Littrell, M. A. 2002. Craft Retailers’ Criteria for Success and Associated Business Strategies. J. Small Bus. Manage., 40(4): 314-331.
31. Pishbahar, E., Ghahremanzadeh, M., Ainollahi, M. and Ferdowsi, R. 2015. Factors Influencing Agricultural Credits Repayment Performance among Farmers in East Azarbaijan Province of Iran. Agr. Sci. Tech., 17(5): 1095-1101.
32. Van Praag, C. M. 2003. Business Survival and Success of Young Small Business Owners. Small Bus. Econ., 21(1): 1-17.
33. Reijonen, H. and Komppula, R., 2007. Perception of Success and Its Effect on Small Firm Performance. JSBED, 14(4): 689-701.
34. Van Rijn, F., Bulte, E. and Adekunle, A. 2012. Social Capital and Agricultural Innovation in Sub-Saharan Africa. Agric. Syst., 108: 112-122.
35. Safa, M., Samarasinghe, S. and Nejat, M., 2015. Prediction of Wheat Production Using Artificial Neural Networks and Investigating Indirect Factors Affecting It: Case Study in Canterbury Province, New Zealand. J. Agr. Sci. Tech., 17(4): 791-803.
36. Sandberg, K. W. 2003. An Exploratory Study of Women in Micro Enterprises: Gender-related Differences. J. Small Bus. Enterprise Dev., 10(4): 408-417.
37. Setsirichok, D., Piroonratana, T., Wongseree, W., Usavanarong, T., Paulkhaolarn, N., Kanjanakorn, C., Sirikong, M., Limwongse, C. and Chaiyaratana, N. 2012. Classification of Complete Blood Count and Haemoglobin Typing Data by a C4. 5 Decision Tree, a Naïve Bayes Classifier and a Multilayer Perceptron for Thalassaemia Screening. Biomed. Signal Process. Control, 7(2): 202-212.
38. Svendsen, G. L. H., Kjeldsen, C., and Noe, E. (2010). How do Private Entrepreneurs Transform local Social Capital into Economic Capital? Four Case Studies from Rural Denmark. J. Socec., 39(6): 631-644.
39. Tang, T. C. and Chi, L. C. 2005. Neural Networks Analysis in Business Failure Prediction of Chinese Importers: A Between-countries Approach. Expert Syst. Appl., 29(2): 244-255.
40. Unger, J.M., Rauch, A., Frese, M. and Rosenbusch, N. 2011. Human Capital and Entrepreneurial Success: A Meta-analytical Review. J. Bus. Venturing, 26(3): 341-358.
41. Wang, Y., Li, J., Gu, J., Zhou, Z. and Wang, Z.,2015. Artificial Neural Networks for Infectious Diarrhea Prediction Using Meteorological Factors in Shanghai (China). Appl. Soft. Comput., 35: 280-290.
42. Wilson, D. R. and Martinez, T. R. 2003. The General Inefficiency of Batch Training for Gradient Descent Learning. Neural Netw., 16(10): 1429-1451.
43. Wu, W., Wang, J., Cheng, M. and Li, Z. 2011. Convergence Analysis of Online Gradient Method for BP Neural Networks. Neural Netw., 24(1): 91-98.
44. Youn, H. and Gu, Z. 2010. Predicting Korean Lodging Firm Failures: An Artificial Neural Network Model along with a Logistic Regression Model. Int. J. Hosp. Manag., 29(1): 120-127.
45. Zhao, C., Gao, Y., He, J. and Lian, J. 2012. Recognition of Driving Postures by Multiwavelet Transform and Multilayer Perceptron Classifier. Eng. Appl. Artif. Intell., 25(8): 1677-1686.
46. Zhu, X., Li, J., Wu, D., Wang, H. and Liang, C. 2013. Balancing Accuracy, Complexity and Interpretability in Consumer Credit Decision Making: A C-TOPSIS Classification Approach. Knowl.-Based Syst., 52: 258-267.