Low Energy Rotary Nozzle: An Energy and Water Saving Device for Field Crop Irrigation

Author
ICAR Research Complex for Eastern Region, Division of Land and Water Management, Patna-800 014, Bihar, India.
Abstract
Pressurized irrigation technologies of course have the potential to raise the productivity of land and water; but, these technologies could not popularize among the smallholders who own millions of farms worldwide. In developing pressurized irrigation technologies, particularly for field crops irrigation, researchers and manufacturers have developed more specialized and expensive technologies with sophisticated and intricate hardware. These new technologies have benefited only the large and wealthier farmers leaving the smallholders to remain confined with conventional methods of irrigation. This paper discusses the design, performance, and applicability of a low-pressure water sprinkling nozzle, named LERN. This nozzle can be operated satisfactorily over the operating pressure range of 79-117 kPa. The water application rate of LERN is reasonably high, i.e. 20-23 mm h-1; therefore, field crops such as rice, wheat, oil seed etc. can be irrigated quickly and efficiently even at small plots, where available options such as impact sprinklers are, in general, neither feasible nor applicable due to high pressure requirement (196 - 294 kPa), non-divisibility over small plots, and relatively high cost of pumping and system networking. Since the pressure requirement at the nozzle head reflects overall cost of a pressurised irrigation system, LERN holds greater promise in development of a cost effective pressurized irrigation system for irrigating field crop even at small plots.

Keywords


1. Abo-Ghobar, H. M. and Al-Amoud, A. I. 1994. Performance Characteristics of Micro-sprinklers Irrigating Greenhouses in Saudi Arabia. J. King Saud Univ. Agric. Sci., 6: 27-37.
2. Al-Ghobari, H. M. 2014. Effect of Center Pivot System Lateral Configuration on Water Application Uniformity in an Arid Area. J. Agr. Sci. Tech., 16: 577-589
3. ASAE. 1999. Planning, Design, Operation and Management of Low Energy Precision Application (LEPA) Irrigation System. Engineering Practice X531, Am. Soc. of Agric. Eng., St. Joseph, MI 49085, 17 PP.
4. Battin, R. H. 1999. An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, Reston VA, 102 PP.
5. Burke, J. and Moench, M. 2000. Groundwater and Society: Resources, Tensions and Opportunities. Themes in Groundwater Management for the 21st Century. UN Dept. of Eco. and Social Affairs, New York, USA.
6. Chand, R., Prasanna, P. A. L. and Singh, A. 2011. Farm Size and Productivity: Understanding the Strengths of Smallholders and Improving Their Livelihoods. Economic. Polit. Weekly Supp., xlvi(26 and 27): 1-7.
7. Christiansen, J. E. 1942. Irrigation by Sprinkling. Agricultural Experiment Station, University of California, Bull., 670.
8. Cornish, G. 1998. Modern Irrigation Technologies for Smallholders in Developing Countries. Intermediate Technology Publications in Association with HR Wallingford, UK.
9. Edling, R. J. 1985. Kinetic Energy, Evaporation, and Wind Drift of Droplets from Low–pressure Irrigation Nozzles. Trans. ASAE, 28(5): 1543–1550.
10. El-Berry, A. M., Ramadan M. H., Mohsen, E. A. and Hashem, M. M. 2009. Effect of Nozzle Shape and Pressure on Droplet Size Distribution. Misr J. Agric. Eng., 26(1): 208- 223
11. Foster, S., Garduno, H., Tuinhof, A. and Tovey, C. 2009. Groundwater Governance: Conceptual Framework for Assessment of Provisions and Needs. World Bank/GWP GW-MATE Strategic Overview Series SO-1, Washington DC, USA.
12. Gabriel, S, Ezra, P., Oniward, S., Tendai, M. 2011. Performance of 4 mm Impact Sprinklers at Different Spacing within Acceptable Pressure Range (250-350 kPa). Int. J. Eng. Sci. Technol. (IJEST), 3(3): 1858-1863.
13. Garduno, H. and Foster, S. 2010. Sustainable Groundwater Irrigation: Approaches to Reconciling Demand with Resources. World Bank/GWP GW-MATE Strategic Overview Series SO-4, Washington DC, USA.
14. Hillel, D. 1989. Adaptation of Modern Irrigation Methods to Research Priorities of Developing Countries. In: “Technological and Institutional Innovation in Irrigation”, (Eds.): Le Moigne, G., Barghouti, S. and Plusquellec, H.. World Bank Technical Paper No. 94. World Bank, Washington DC, PP. 88–93.
15. Hills, D. and Gu, Y. 1989. Sprinkler Volume Mean Droplet Diameter as a Function of Pressure. Trans. ASAE, 32(2): 471-476.
16. IFAD. 2013. Smallholders, Food Security and the Environment: International Fund for Agricultural Development. United Nations Environment Programme, Rome, Italy.
17. Keller. J., Adhikari, D. L., Petersen, M. R. and Suryawanshi, S. 2001. Engineering Low-cost Micro-irrigation for Small Plots. Report No.5. International Development Enterprises, Longmont, Colorado.
18. Keller, J. and Bliesner, R. D. 1990. Sprinkle and Trickle Irrigation. An AVI Book, Van Nostrand Reinhold, New York, 173 PP.
19. Karmeli, D. 1978. Estimating Sprinkler Distribution Patterns Using Linear Regression. Trans. ASAE, 21: 682-686.
20. Kincaid, D. C. 1991. Impact Sprinkler Pattern Modification. Trans. ASAE, 34(6): 2397-2403.
21. Kohl, R. A. 1974. Drop Size Distribution from Medium-sized Agricultural Sprinklers. Trans. ASAE, 15(2): 690-693.
22. Letey, J., Dinar A., Woodring, C. and Oster, J. D. 1990. An Economic Analysis of Irrigation Systems'. Irri, Sci., 11: 37-43.
23. Li, J. and Rao, M. 2000. Sprinkler Water Distributions as Affected by Winter Wheat Canopy. Irri. Sci., 20: 29-35.
24. Li, J. and Rao, M. 2003. Field Evaluation of Crop Yield as Affected by Non-uniformity Sprinkler-applied Water and Fertilizers. Agric. Wat. Manage., 59: 1-13.
25. Li, J. and Hiroshi, K. 1998. Sprinkler Performance as Affected by Nozzle Inner Contraction angle. Irri. Sci., 18: 63-66.
26. Little, G. E., Hills, D. J. and Hanson, B. R. 1993. Uniformity in Pressurized Irrigation Systems Depends on Design, Weather and Installation. California Agric., 47: 18-2l.
27. Liu, J. P., Yuan, S. Q., Li, H. and Zhu, X. Y. 2013. Numerical Simulation and Experimental Study on a New Type of Variable-rate Fluidic Sprinkler. J. Agr. Sci. Tech., 15: 569-581
28. Lyle, W. M. and Bordovsky, J. P. 1981. Low Energy Precision Application (LEPA) Irrigation Systems. Trans. ASAE, 24(5): 1241-1245
29. Menke, W. and Abbott, D. 1990. Geophysical Theory. Columbia University Press, PP. 124–126.
30. Oksana, N. 2005. Small Farms: Current Status and Key Trends. Information Brief Prepared for Workshop on the Future of Small Farms Research, Wye College, London.
31. Palanisami, K., Kadiri, M., Kakumanu, K. R. and Raman, S. 2011. Spread and Economics of Micro-irrigation in India: Evidence from Nine States. Eco. Polit. Week. Suppl., xlvi(26 and 27): PP: 81-86.
32. Phocaides, A. 2000. Technical Handbook on Pressurized Irrigation Techniques. Food and Agriculture Organization of the United Nations, Rome.
33. Polak, P., Nanes, B. and Adhikari, D. 1997. A Low-cost drip Irrigation System for Small Farmers in Developing Countries. J. Amer. Wat. Resour. Assoc., 33(1): 119-124.
34. Ring, L. and Heerman. 1978. Determining Center-pivot Sprinkler Uniformities. Paper No. 78-2001, ASAE.
35. Romero, J. N. O., Martinez, J. M., Martinez, R. S. and Martin-Binto, J. M. T. 2006. Set Sprinkler Irrigation and Its Cost. J. Irrig. Drain. Eng., 132(5): 445- 452.
36. Shahzadi, E. 2013. Investigating Factors Influencing Adoption of Pressurized Irrigation Systems by Farmers Case Study: Garmsar County, Iran. American-Eurasian J. Agric. Environ. Sci., 13(1): 115-120.
37. Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Doell, P. and Portman, F. T. 2010. Groundwater Use for Irrigation: A Global Inventory. Hydrol. Earth Syst. Sci., 14: 1863-1880.
38. Smajstrla, A. G., Boman, B. J., Clark, G. A., Haman, D. Z., Pitts, D. J. and Zazueta, F. S. 1997. Field Evaluations of Irrigation Systems: Solid Set or Portable Sprinkler Systems. The Institute of Food and Agricultural Sciences (IFAS), University of Florida, USA, Bull., 266.
39. Singh, A. K., Sharma, S. P., Upadhyaya, A., Rahman, A. and Sikka, A. K. 2010. Performance of low energy water application device. Water Resour. Manage., (24): 1353-1362
40. Solomon, K. H. 1990. Sprinkler Irrigation Uniformity. CATI Publication No. 900803, Centre for Irrigation Technology, California State University, Fresno, USA.
41. Sourell, H., Faci, J. M. and Playan, E. 2003. Performance of Rotating Spray Plate Sprinklers in Indoor Experiments. J. Irrig. Drain. Eng., 129(5): 376-380.
42. Steiner, J. L., Kanemasu, E. T. and Clark. R. N. 1983. Spray Losses and Partitioning of Water under a Center–pivot Sprinkler System. Trans. ASAE, 26(4): 1128–1134.
43. Suryawanshi, S. K. 1995. Success of Drip in India: An Example to the Third World. Micro Irrigation for a Changing World. Proceedings of the 5th International Micro Irrigation Congress, ASAE, St. Joseph, Michigan: ASAE.
44. Tarjuelo, J. M., Montero, J., Valiente, M., Honrubia, F. T. and Ortiz, J. 1999. Irrigation Uniformity with Medium Size Sprinklers. Part I. Characterization of Water Distribution in No-wind Conditions. Trans. ASAE, 42(3): 665-675.
45. Takwale, R. G. and Puranik, P. S. 1980. Introduction to Classical Mechanics. Tata McGraw-Hill, 248 PP.
46. Visalakshi, K. P., Seekumaran, V., Susheela, P. and Santhakumari, G. 2002. Extension Brochure Entitled: “A kit for LEPA Type Micro Sprinkler”. Publication Unit, Director of Extension, Kerala Agricultural University Mannuthy, Thrissur, Kerala, India.
47. Wong, D. C. Y., Simmons, M. J. H., Decent, S. P., Parau, E. I. and King, A. C. 2004. Break-up Dynamics and Droplet Size Distributions Created from Spiraling Liquid Jets. Intl. J. Multiphase Flow, 30: 499-520.