Evaluating Allelopathic Effects of Some Plant Species in Tissue Culture Media as an Accurate Method for Selection of Tolerant Plant and Screening of Bioherbicides

Authors
1 Plant Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Islamic Republic of Iran.
2 Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
Abstract
Plant tissue culture technique could provide sterile and controllable condition in order to assay direct effect of different compounds on plant growth accurately. In this study, the effects of aqueous extracts prepared from roots and shoots of goosefoot (Chenopodium album L.), redroot pigweed (Amaranthus retroflexus L.), fennel (Foeniculum vulgare), and wormwood (Artemisia absinthium L.) were evaluated on the seed germination and growth criteria in tissue culture media. The fennel root extract, nearly without phenolic content and with low antioxidant activity, showed the most drastic allelopathic effect on goosefoot, especially at 100 mg mL-1 concentration, which might be due to the presence of some substance potentially useful for biological control of goosefoot, an invasive weed. Goosefoot was resistant to extract of fennel shoot, wormwood root, and shoot, while fennel and radish (Raphanus sativus L.), at high concentration (100 mg mL-1), were not resistant to the root and shoot extracts of both goosefoot and redroot pigweed. In response to allelopathic components, shoot:root ratio was increased, and more peroxidase and superoxide dismutase activity were detected in roots. There was no direct relationship between allelopathic effects with total phenolic content and antioxidant activity. In conclusion, our results showed that allelopathic effects of extracts on growth and biochemical criteria depended on both the concentration levels and the plant parts from which the aqueous extract was derived. Therefore, tissue culture media is an accurate and suitable tool to screen plants resistant to allelopathic components of weeds, and to identify high allelopathic plants as potential bioherbicide and invasive plant controller.

Keywords


1. Anaya, A. L., Saucedo-García, A., Contreras-Ramos, S. M. and Cruz-Ortega, R. 2013. Plant-Mycorrhizae and Endophytic Fungi Interactions: Broad Spectrum of Allelopathy Studies. In: “Allelopathy: Current Trends and Future Applications”, (Eds.): Cheema, Z. A., Farooq, M. and Wahid, A.. Springer-Verlag Berlin, Heidelberg, New York, Dordrecht, London, PP. 55-80.
2. Aryakia, E. and Hamidoghli, Y. 2010. Comparison of Kinetin and 6- banzyl Amino Purine Effect on in vitro Microtuberization of Two Cultivars of Potato (Solanum tuberosum L.). Amer. Eur. J. Agri. Environ. Sci., 8: 710-714.
3. Bai, R., Ma, F., Liang, D. and Zhao, X. 2009. Phthalic Acid Induces Oxidative Stress and Alters the Activity of Some Antioxidant Enzymes in Roots of Malus prunifolia. J. Chem. Ecol., 35: 488–494.
4. Balezentiene, L. and Seziene, V. 2010. Biochemical Impact of Dominant Extracts of Scots Pine Cuttings on Germination. Polish J. Environ. Stud., 19: 35-42.
5. Barazani, O. and Friedman, J. 2001. Allelopathic Bacteria and Their Impact on Higher Plants. Crit. Rev. Microbiol., 27: 41–55.
6. Ben-hammouda, M., Kremer, R. J., Minor, H. C. and Sarwer, M. 1995. Chemical Basis for Differential Allelopathic Potential of Sorghum Hybrids on Wheat. J. Chem. Ecol., 21: 775-786.
7. Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K. and Gawronski, S. W. 2006. Allelopathic Effects of Sunflower Extracts on Mustard Seed Germination and Seedling Growth. Biol. Plant., 50: 156-158.
8. Bouman, H. and Tiekstra, A. 2001. Mineral Nutrition in Tissue Culture: Influence on Propagation and Quality of the Plantlets. Find Out How to Access Preview-only Content Plant Nutrition. Developments Plant Soil Sci., 92: 316-317.
9. Brand, W. W., Cuvelier, H. E. and Berset, C. 1995. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol., 82: 25–30.
10. Caia, Y., Luob, Q., Sunc, M. and Corke, H. 2004. Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sci., 74: 2157–2184.
11. Cheel, J., Tumova, L., Areche, C., Van Antwerpen, P., Neve, J., Zouaoui-Boudjeltia, K., San Martin A., Vokral, I., Wsol, V. and Neugebauerova, J. 2012. Variations in the Chemical Profile and Biological Activities of Licorice (Glycyrrhiza glabra L.), as Influenced by Harvest Times. Acta Physiol. Plant., 35: 1337-1349.
12. Chon, S. U. and Nelson, C. J. 2010. Allelopathy in Compositae Plants: A Review. Agron. Sustain. Dev., 30: 349–358.
13. Chowhan, N., Pal Singh, H., Batish, D. R., Kaur, S., Ahuja, N. and Kohli, R. K. 2013. β-pinene Inhibited Germination and Early Growth Involves Membrane Peroxidation. Protoplasma., 250: 691-700.
14. Cipollini, D., Rigsby, C. M. and Barto, E. K. 2012. Microbes as Targets and Mediators of Allelopathy in Plants. J. Chem. Ecol., 38: 714–727.
15. Einhellig, F. A. 1995. Allelopathy: Current Status and Future Goals. ACS Symp. Series, 582: 1-24.
16. Einhellig, F. A. 1996. Interactions Involving Allelopathy in Cropping Systems. Agron. J., 88: 886-893.
17. Elliott, L. F. and Cheng, H. H. 1987. Assessment of Allelopathy among Microbes and Plants. In: “Allelochemicals: Role in Agriculture and Forestry”. (Eds.): Waller, G. R.. American Chemical Society, Washington, DC, PP. 504–515.
18. Fernandez, C., Monnier, Y., Ormeno, E., Baldy, V., Greff, S., Pasqualini, M. J. and Bousquet-Melou, A. 2009. Variations in Allelochemical Composition of Leachates of Different Organs and Maturity Stages of Pinus halepensis. J. Chem. Ecol., 35: 970–979.
19. Garcia-Sanchez, M., Garrido, I., Casimiro, I. D. J., Casero, P. J., Espinosa, F., Garcia-Romera, I. and Aranda, E. 2012. Defence Response of Tomato Seedlings to Oxidative Stress Induced by Phenolic Compounds from Dry Olive Mill Residue. Chemosphere, 89: 708–716.
20. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide Dismutases. I. Occurrence in Higher Plants. Plant Physiol., 59: 309-314.
21. Goodal, J., Witkowski, E. T. F., McConnachie, A. J. and Keen, C. 2012. Altered Growth, Population Structure and Realised Niche of the Weed Campuloclinium macrocephalum (Asteraceae) After Exposure to the Naturalised Rust Puccinia eupatorii (Pucciniaceae). Biol. Invasions., 14: 1947-1962.
22. Inderjit. 1996. Plant Phenolics in Allelopathy. Bot. Rev., 62: 186-202.
23. Jarchow, M. E. and Cook, B. J. 2009. Allelopathy as a Mechanism for the Invasion of Typha angustifolia. Plant Ecol., 204: 113–124.
24. Jinhu, M., Guofang, X., Wenxiu, Y., Leilei, M., Mei, G., Yuguo, W. and Yuanhuai, H. 2012. Inhibitory Effects of Leachate from Eupatorium adenophorum on Germination and Growth of Amaranthus retroflexus and Goosefoot glaucum. Acta Ecol. Sinica., 32: 50–56.
25. Kalir, A., Omri, G. and Poljakoff-Mayber, A. 1984. Peroxidase and Catalase Activity in Leaves of Halimione portulacoides Exposed to Salinity. Physiol. Plant., 62: 238–244.
26. Kato-Noguchi, H., Thi, H., Sasaki, H. and Suenaga, K. 2012. A Potent Allelopathic Substance in Cucumber Plants and Allelopathy of Cucumber. Acta Physiol. Plant., 34: 2045–2049.
27. Lara-Nunez, A., Romero-Romero, T., Ventura, J. L., Blancas, V., Anaya, A. L. and Cruz-Ortega, R. 2006. Allelochemical Stress Causes Inhibition of Growth and Oxidative Damage in Lycopersicon esculentum Mill. Plant Cell Environ., 29: 2009–2016.
28. Li, Z. H., Wang, Q., Ruan, X., Pan, C. D. and Jiang D. A. 2010. Phenolics and Plant Allelopathy. Mol., 15: 8933-8952.
29. Lin, D., Tsuzuki, E., Dong, Y., Terao, H. and Xuan, T. D. 2004. Potential Biological Control of Weeds in Rice Fields by Allelopathy of Dwarf Lilyturf. Plants BioControl., 49: 187–196.
30. Lu, M., Yuan, B., Zeng, M. and Chen, J. 2011. Antioxidant Capacity and Major Phenolic Compounds of Spices Commonly Consumed in China. Food Res. Int., 44: 530–536.
31. Lyon, J. and Sharpe, W. E. 1996. Hay-scented Fern (Dennstaedtia punctilobula (Michx.) Moore) Interference with Growth of Northern Red Oak (Quercus rubra L.) Seedlings. Tree Physiol., 16: 923-932.
32. Mallik, M. A. B. and Williams, R. D. 2008. Plant Growth Promoting Rhizobacteria and Mycorrhizal Fungi in Sustainable Agriculture and Forestry. In: “Allelopathy in Sustainable Agriculture and Forestry”. (Eds.): Zeng, R. S., Mallik, A. U. and Luo, S. M.. Springer Science+Business Media, LLC, New York, PP. 321-345.
33. Mishra, S. and Nautiyal, C. S. 2011. Reducing the Allelopathic Effect of Parthenium hysterophorus L. on Wheat (Triticum aestivum L.) by Pseudomonas putida. Plant Growth Regulator J., 66: 155–165.
34. Muscolo, A., Sidari, M., Logoteta, B. and Panuccio, M. R. 2010. Carboxyl and Phenolic Humic Fractions Alter the Root Morphology in Arabidopsis thaliana Seedlings. Fresenius Environ. Bull., 19: 12b.
35. Murashige, T. and Skoog, F.1962. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Plant Physiol., 15: 473–497.
36. Mutlu, S., Atici, O., Esim, N. and Mete, E. 2010. Essential Oils of Catmint (Nepeta meyeri Benth.) Induce Oxidative Stress in Early Seedlings of Various Weed Species. Acta Physiol. Plant., 33: 943–951.
37. Noctor, G. and Foyer, C. H. 1998. Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annu. Rev. Plant Physiol., 49: 249–279.
38. Oueslati, O. 2003. Allelopathy in Two Durum Wheat (Triticum durum L.) Varieties Agriculture. Ecosys. Environ., 96: 161–163.
39. Peguero, G., Lanuza, O. R. and Save, R. 2012. Allelopathic Potential of the Neotropical Dry-forest Tree Acacia pennatula Benth.: Inhibition of Seedling Establishment Exceeds Facilitation under Tree Canopies. Plant Ecol., 213: 1945-1953.
40. Singh, A., Singh, D. and Singh, N. B. 2009. Allelochemical Stress Produced by Aqueous Leachate of Nicotiana plumbaginifolia Viv. Plant Growth Regulator J., 58: 163-171.
41. Singleton, V. L. and Orthofer, R. 1999. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol., 299: 152-178.
42. Siril, E. A. and Joseph, N. 2013. Micropropagation of Annatto (Bixa orellana L.) from Mature Tree and Assessment of Genetic Fidelity of Micropropagated Plants with RAPD Markers. Physiol. Mol. Biol. Plant., 19: 147-155.
43. Sodaeizadeh, H., Rafieiolhossaini, M., Havlik, J. and Damme, P. V. 2009. Allelopathic Activity of Different Plant Parts of Peganum harmala L. and Identification of Their Growth Inhibitors Substances. Plant Growth Regulator J., 59: 227–236.
44. Soltys, D., Rudzinska-Langwald, A., Kurek, W., Gniazdowska, A., Sliwinska, E. and Bogatek, R. 2011. Cyanamide Mode of Action during Inhibition of Onion (Allium cepa L.) Root Growth Involves Disturbances in Cell Division and Cytoskeleton Formation. Planta., 234: 609–621.
45. Sturz, A. V. and Christie, B. R. 2003. Beneficial Microbial allelopathies in the Root Zone: the Management of Soil Quality and Plant Disease with Rhizobacteria. Soil Tillage Res., 72: 107-123.
46. Teerarak, M., Charoenying, P. and Laosinwattana, C. 2012. Physiological and Cellular Mechanisms of Natural Herbicide Resource from Aglaia odorata Lour. on Bioassay Plants. Acta Physiol. Plant., 34: 1277-1285.
47. Tigrea, R. C., Silvab, N. H., Santosc, M. G., Hondad, N. K., Falcãoe, E. P. S. and Pereiraf, E. C. 2012. Allelopathic and Bioherbicidal Potential of Cladonia verticillaris on the Germination and Growth of Lactuca sativa. Ecotoxicology and Environ. Safety, 84: 125–132.
48. Tognetti, P. M. and Chaneton, E. J. 2012. Invasive Exotic Grasses and Seed Arrival Limit Native Species Establishment in an Old-Field Grassland Succession. Biol. Invasion., 14: 2531–2544.
49. Valera-Burgos, J., Diaz-Barradas, M. C. and Zunzunegui, M. 2012. Effects of Pinus pinea Litter on Seed Germination and Seedling Performance of Three Mediterranean Shrub Species. Plant Growth Regulator J., 66: 285–292.
50. Wojdylo, A., Oszmianski, J. and Czemerys, R. 2007. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem., 105: 940–949.
51. Yang, W. D., Liu, J. S., Li, H. Y., Zhang, X. L. and Qi, Y. Z. 2009. Inhibition of the Growth of Alexandrium tamarense by Algicidal Substances in Chinese Fir (Cunninghamia lanceolata). Bull. Environ. Contam. Toxicol., 83: 537–541.
52. Xuan, T. D, Toyama, T., Dang Khanh, T., Tawata, S. and Nakagoshi, N. 2012. Allelopathic Interference of Sweet Potato with Cogongrass and Relevant Species. Plant Ecol. J., 213: 1955–1961.