1. Alvarez, R. 2009. Predicting Average Regional Yield and Production of Wheat in the Argentine Pampas by an Artificial Neural Network Approach. European J. Agron., 30: 70-77.
2. Breiman, A. and Graur, D. 1995. Wheat Evaluation. Israel J. Plant Sci., 43: 58-95.
3. Colwell, J. D. 1994. Estimating Fertilizer Requirements: A Quantitative Approach. CAB International, Wallingford.
4. Fang, Q., Hanna, M. A., Haque, E. and Spillman, C. K. 2000. Neural Network Modeling of Energy Requirments, for Size Reduction of Wheat. ASAE, 43(4): 947-952.
5. FAO. 2012. FAO Statistical Yearbook 2012: World Food and Agriculture. Food and Agriculture Organization of the Unites Nations, Rome.
6. Faramarzi, M., Yang, H., Schulin, R. and Abbaspour, K. C. 2010. Modeling Wheat Yield and Crop Water Productivity in Iran: Implications of Agricultural Water Management for Wheat Production. Agric. Water Manag., 97: 1861-1875.
7. Folberth, C., Yang, H., Wang, X. and Abbaspour, K. C. 2012. Impact of Input Data Resolution and Extent of Harvested Areas on Crop Yield Estimates in Large-scale Agricultural Modeling for Maize in the USA. Ecol. Model., 235–236: 8-18.
8. Gemtos, T. A., Markinos, A. and Nassiou, T. 2005. Cotton Lint Quality Spatial Variability and Correlation with Soil Properties and Yield. Precision agiculture’05. Papers presented at the 5th European Conference on Precision Agiculture, Uppsala, Sweden, pp. 361-368.
9. Hagan, M., Demuth, H. and Beale, M. 2002. Neural Network Design. PWS Publishing Company, Boston, USA.
10. Heinzow, T. and Tol, R. S. J. 2003. Prediction of Crop Yields Across Four Climate Zones in Germany: An Artificial Neural Network Approach. Centre for Marine and Climate Research, Hamburg University, Hamburg.
11. Hornik, K., Stinchocombe, M. and White, H. 1989. Multilayer Feedforward NetworksAre Universal Approximators. Elsevier Science Ltd. Oxford, UK, 2.
12. Jebaraj, S. and Iniyan, S. 2006. A Review of Energy Models. Renew. Sust. Ener. Rev., 10: 281-311.
13. Kaul, M., Hill, R. L. and Walthall, C. 2005. Artificial Neural Networks for Corn and Soybean Yield Prediction. Agric. Sys., 85: 1-18.
14. Khakural, B. R., Robert, P. C. and Huggins, D. R. 1999. Variability of Corn/Soybean Yield and Soil/Landscape Properties across a Southwestern Minnesota Landscape. Precision Agriculture, 573-579.
15. Kole, C., 2006. Cereals and Millets. Springer, New York, Berlin.
16. Kominakis, A. P., Abas, Z., Maltaris, I. and Rogdakis, E. 2002. A Preliminary Study of the Application of Artificial Neural Networks to Prediction of Milk Yield in Dairy Sheep. Computers and Electronics in Agriculture, 35: 35-48.
17. Kronstad, W. E. 1998. Agricultural Development and Wheat Breeding in the 20th Century. The 5th International Wheat Conference: Developments in Plant Breeding, Kluwer Academic Publishers, Dordrecht, The Netherlands, Ankara, Turkey, , PP. 1-10.
18. Mitchell, D. O., Ingco, M. D. and Duncan, R. C. 1997. The World Food Outlook. Cambridge University Press, Cambridge, New York.
19. Niska, H., Skon, J. -P., Packalen, P., Tokola, T., Maltamo, M. and Kolehmainen, M. 2010. Neural Networks for the Prediction of Species-specific Plot Volumes Using Airborne Laser Scanning and Aerial Photographs. IEEE Trans. Geosci. Remote Sens., 48: 1076-1085.
20. Özdoğan, M. 2011. Modeling the Impacts of Climate Change on Wheat Yields in Northwestern Turkey. Agric. Ecosys. Environ.,141: 1-12.
21. Ozkan, B., Akcaoz, H. and Fert, C. 2004. Energy Input-output Analysis in Turkish Agriculture. Renew. Ener., 29: 39-51.
22. Papageorgiou, E. I., Aggelopoulou, K. D., Gemtos, T. A., Nanos and G. D. 2013. Yield Prediction in Apples Using Fuzzy Cognitive Map Learning Approach. Computers and Electronics in Agriculture, 91: 19-29.
23. Papageorgiou, E. I., Markinos, A. T. and Gemtos, T. A. 2011. Fuzzy Cognitive Map Based Approach for Predicting Yield in Cotton Crop Production as a Basis for Decision Support System in Precision Agriculture Application. Appl. Soft Computing, 11: 3643-3657.
24. Pimentel, D. and Pimentel, M. 2008. Food, Energy, and Society. CRC Press, Boca Raton, FL.
25. Rosegrant, M. W., Agcaolli-Sombilla, A. and Perez, N. 1995. Global Food Projections to 2020: Implications for Investment 2020 Vision Discussion Papers 5. Intl Food Policy Res Inst.
26. Safa, M. and Samarasinghe, S. 2011. Determination and Modelling of Energy Consumption in Wheat Production Using Neural Networks: A Case Study in Canterbury Province, New Zealand. Ener., 36: 5140-5147.
27. Salehi, F., Lacroix, R. and Wade, K. M. 1998. Improving Dairy Yield Predictions through Combined Record Classifiers and Specialized Artificial Neural Networks. Computers and Electronics in Agriculture, 20:199-213.
28. Samarasinghe, S. 2007. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. Auerbach, Boca Raton, FL.
29. Schultz, A., Wieland, R. and Lutze, G. 2000. Neural Networks in Agroecological Modelling-stylish Application or Helpful Tool? Computers and Electronics in Agriculture, 29: 73-97.
30. Sharma, A. K., Sharma, R. K. and Kasana, H. S. 2007. Prediction of First Lactation 305-day Milk Yield in Karan Fries Dairy Cattle Using ANN Modeling. Appl. Soft Computing.,7:1112-1120.
31. Singh, H., Singh, A. K., Kushwaha, H. L. and Singh, A. 2007. Energy Consumption Pattern of Wheat Production in India. Ener., 32:1848-1854.
32. Soares, J. D. R., Pasqual, M., Lacerda, W. S., Silva, S. O. and Donato, S. L. R. 2013. Utilization of Artificial Neural Networks in the Prediction of the Bunches’ Weight in Banana Plants. Scientia Horticulturae, 155: 24-29.
33. Sözen, A. 2009. Future Projection of the Energy Dependency of Turkey Using Artificial Neural Network. Ener. Policy., 37: 4827-4833.
34. Statistics New Zealand. 1999. A Regional Profile: New Zealand, Canterbury. Statistics New Zealand, Wellington, New Zealand.
35. Statistics New Zealand. 2004. Water: Monetary Stock Report. Statistics New Zealand, Wellington, NZ.
36. Statistics New Zealand. 2008. Agricultural Production Statistics (Final): June 2007. Statistics New Zealand, Wellington.
37. Statistics New Zealand. 2010. Harvests Increase for Wheat, Barley, and Maize Grain. Statistics New Zealand, Wellington, NZ.
38. Sudduth, K. A., Drummond, S. T., Birrell, S. J. and Kitchen, N. R. 1997. Spatial Modeling of Crop Yield Using Soil and Topographic Data. Precision agriculture '97. Volume I. Spatial variability in soil and crop. Papers presented at the First European Conference on Precision Agriculture, Warwick University, UK, 7-10 September 1997.
39. Uno, Y., Prasher, S. O., Lacroix, R., Goel, P. K., Karimi, Y., Viau, A. and Patel, R. M. 2005. Artificial Neural Networks to Predict Corn Yield from Compact Airborne Spectrographic Imager Data. Computers and Electronics in Agriculture, 47: 149-161.
40. Wendroth, O., Jurschik, P., Giebel, A. and Nielsen, D. R. 1999. Spatial Statistical Analysis of On-site Crop Yield and Soil Observations for Site-specific Management. Proceedings of the Fourth International Conference on Precision Agriculture, Pts a and B.