Overexpression of Rice Phosphate Transporter Gene OsPT2 Enhances Tolerance to Low Phosphorus Stress in Soybean

Authors
1 National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.
2 College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.
3 Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
Abstract
Low phosphorous (P) availability in soils limits production of soybean [Glycine max (L.) Merr.] around the world. This study was conducted to determine whether exogenous expression of the rice (Oryza sativa L.) phosphates transporter gene OsPT2 would increase inorganic phosphates (Pi) acquisition and improve yield in transgenic soybean. Cotyledonary-node explants of the soybean were inoculated with the Agrobacterium tumefaciens strain EHA105 harboring the vector pCAMBIA3301-OsPT2, which contained OsPT2, gus and bar genes. Ten fertile T0 transgenic plants were obtained and semi-quantitative RT-PCR of progenies demonstrated that OsPT2 gene was overexpressing in the T2 generation. Three T2 transgenic lines overexpressing OsPT2 were selected and subjected to testing for tolerance to low concentrations of Pi (low-Pi; 20 μM Pi) by hydroponic culture using modified Hoagland’s nutrient solution. The total P contents in the leaves, stems, roots, and seeds of the transgenic plants significantly increased under the concentrations of low-Pi and 1,000 μM Pi of standard Hoagland’s nutrient solution. Under low-Pi stress, the yields of the transgenic lines were significantly higher than those of the wild type. Taken together, our data suggest that the overexpression of OsPT2 in transgenic soybean lines improves Pi acquisition and seed yield, and OsPT2 may serve as one of the promising target genes that can be manipulated in crop improvement for minor use of Pi fertilizers.

Keywords


1. Ai, P. H., Sun, S. B., Zhao, J. N., Fan, X. R., Xin, W. J., Guo, Q., Yu, L., Shen, Q. R., Wu, P., Miller, A. J. and Xu, G. H. 2009. Two Rice Phosphate Transporters, OsPht1;2 and OsPht1;6, Have Different Functions and Kinetic Properties in Uptake and Translocation. Plant J., 57: 798-809.
2. Chapotin, S. M. and Wolt, J. D. 2007. Genetically Modified Crops for the Bioeconomy: Meeting Public and Regulatory Expectations. Transgenic Res., 16: 675-688.
3. Chen, L., Liu, Q. Q., Gai, J. Y., Zhu, Y. L., Yang, L. F. and Wang, C. 2011. Effects of Nitrogen Forms on the Growth and Polyamine Contents in Developing Seeds of Vegetable Soybean. J. Plant Nutr., 34: 504-521.
4. Fageria, N. K., Moreira, A. and dos Santos, A. B. 2013. Phosphorus Uptake and Use Efficiency in Field Crops. J. Plant Nutr., 36: 2013-2022.
5. Gamborg, O. L., Miller, R. A. and Ojima, K. 1968. Nutrient Requirements of Suspension Cultures of Soybean Root Cells. Exp. Cell Res., 50: 151-158.
6. Guo, C. J., Zhao, X. L., Liu, X. M., Zhang, L. J., Gu, J. T., Li, X. J., Lu, W. J. and Xiao, K. 2013. Function of Wheat Phosphate Transporter Gene TaPHT2;1 in Pi Translocation and Plant Growth Regulation under Replete and Limited Pi Supply Conditions. Planta, 237: 1163-1178.
7. Hata, S., Kobae, Y. and Banba, M. 2010. Interactions between Plants and Arbuscular Mycorrhizal Fungi. Int. Rev. Cell Mol. Bio., 281: 1-48.
8. Herridge, D. F., Peoples, M. B. and Boddey, R. M. 2008. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant Soil, 311: 1-18.
9. Jia, H. F., Ren, H. Y., Gu, M., Zhao, J. N., Sun, S. B., Zhang, X., Chen, J. Y., Wu, P. and Xu, G. H. 2011. The Phosphate Transporter Gene OsPht1;8 is Involved in Phosphate Homeostasis in Rice. Plant Physiol., 156: 1164-1175.
10. López-Bucio, J., de la Vega, O. M., Guevara-García, A. and Herrera-Estrella, L. 2000. Enhanced Phosphorus Uptake in Transgenic Tobacco Plants that Overproduce Citrate. Nat. Biotechnol., 18: 450-453.
11. Li, H., Huang, G., Meng, Q., Ma, L., Yuan, L., Wang, F., Zhang, W., Cui, Z., Shen, J., Chen, X., Jiang, R. and Zhang, F. 2011. Integrated Soil and Plant Phosphorus Management for Crop and Environment in China. Plant Soil, 349: 157-167.
12. Liu, F., Wang, Z., Ren, H., Shen, C., Li, Y., Ling, H. Q., Wu, C., Lian, X. and Wu, P. 2010. OsSPX1 Suppresses the Function of OsPHR2 in the Regulation of Expression of OsPT2 and Phosphate Homeostasis in Shoots of Rice. Plant J., 62: 508-517.
13. Liu, S. C., Chen, G. H., Yang, L. F., Gai, J. Y. and Zhu, Y. L. 2013. Production of Transgenic Soybean to Eliminate the Major Allergen Gly m Bd 30K by RNA Interference-mediated Gene Silencing. J. Pure Applied Microbiol., 7: 589-599.
14. Liu, S. C., Zhang, G. C., Yang, L. F., Mii, M., Gai, J. Y. and Zhu, Y. L. 2014. Bialaphos-resistant Transgenic Soybeans Produced by the Agrobacterium-mediated Cotyledonary-node Method. J. Agric. Sci. Tech., 16: 175-190.
15. Malik, M. A., Cheema, M. A., Khan, H. Z. and Wahid, M. A. 2006. Growth and Yield Response of Soybean (Glycine max L.) to Seed Inoculation and Varying Phosphorus Levels. J. Agric. Res., 44: 47-53.
16. Olhoft, P. M., Flagel, L. E., Donovan, C. M. and Somers, D. A. 2003. Efficient Soybean Transformation Using Hygromycin B Selection in the Cotyledonary-node Method. Planta, 216: 723-735.
17. Olhoft, P. M. and Somers, D. A. 2001. L-Cysteine Increases Agrobacterium-mediated T-DNA Delivery into Soybean Cotyledonary-node Cells. Plant Cell Rep., 20: 706-711.
18. Panigrahy, M., Rao, D. N. and Sarla, N. 2009. Molecular Mechanisms in Response to Phosphate Starvation in Rice. Biotechnol. Adv., 27: 389-397.
19. Park, M. R., Baek, S. H., Reyes, B. G. and Yun, S. J. 2007. Overexpression of a High-affinity Phosphate Transporter Gene from Tobacco NtPT1 Enhances Phosphate Uptake and Accumulation in Transgenic Rice Plants. Plant Soil, 292: 259-269.
20. Qin, L., Zhao, J., Tian, J., Chen, L. Y., Sun, Z. A., Guo, Y. X., Lu, X., Gu, M., Xu, G. H. and Liao, H. 2012. The High-affinity Phosphate Transporter GmPT5 Regulates Phosphate Transport to Nodules and Nodulation in Soybean. Plant Physiol., 159: 1634-1643.
21. Rouached, H., Arpat, A. B. and Poirier, Y. 2010. Regulation of Phosphate Starvation Responses in Plants: Signaling Players and Cross-talks. Mol. Plant, 3: 288-299.
22. Seo, H. M., Jung, Y., Song, S., Kim, Y., Kwon, T., Kim, D. H., Jeung, S. J., Yi, Y. B., Yi, G., Nam, M. H. and Nam, J. 2008. Increased Expression of OsPT1, a High-affinity Phosphate Transporter, Enhances Phosphate Acquisition in Rice. Biotechnol. Lett., 30: 1833-1838.
23. Shah, P., Kakar, K. and Zada, K. 2001. Phosphorus Use-efficiency of Soybean as Affected by Phosphorus Application and Inoculation. Plant Nutrition, Springer, PP. 670-671.
24. Smith, F. W., Mudge, S. R., Rae, A. L. and Glassop, D. 2003. Phosphate Transport in Plants. Plant Soil, 248: 71-83.
25. Subramanyam, K., Arun, M., Mariashibu, T. S., Theboral, J., Rajesh, M., Singh, N. K., Manickavasagam, M. and Ganapathi, A. 2012. Overexpression of Tobacco Osmotin Tbosm in Soybean Conferred Resistance to Salinity Stress and Fungal Infections. Planta, 236: 1909-1925.
26. Sun, S. B., Gu, M., Cao, Y., Huang, X. P., Zhang, X., Ai, P. H., Zhao, J. N., Fan, X. R. and Xu, G. H. 2012. A Constitutive Expressed Phosphate Transporter, OsPht1;1, Modulates Phosphate Uptake and Translocation in Phosphate-replete Rice. Plant Physiol., 159: 1571-1581.
27. Vance, C. P. 2001. Symbiotic Nitrogen Fixation and Phosphorus Acquisition. Plant Nutrition in a World of Declining Renewable Resources. Plant Physiol., 127: 390-397.
28. Vance, C. P., Uhde-Stone, C. and Allan, D. L. 2003. Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Nonrenewable Resource. New Phytol., 157: 423-447.
29. Wang, X. R., Wang, Y. X., Tian, J., Boon, L. L., Yan, X. L. and Liao, H. 2009. Overexpressing AtPAP15 Enhances Phosphorus Efficiency in Soybean. Plant Physiol., 151: 233-240.
30. Win, M., Nakasathien, S. and Sarobol, E. 2010. Effects of Phosphorus on Seed Oil and Protein Contents and Phosphorus Use Efficiency in Some Soybean Varieties. Kasetsart J. Nat. Sci., 44: 1-9.
31. Wu, P., Shou, H. X., Xu, G. H. and Lian, X. M. 2013. Improvement of Phosphorus Efficiency in Rice on the Basis of Understanding Phosphate Signaling and Homeostasis. Curr. Opin. Plant Biol., 16: 1-8.
32. Wu, Z., Zhao, J., Gao, R., Hu, G., Gai, J., Xu, G. and Xing, H. 2011. Molecular Cloning, Characterization and Expression Analysis of Two Members of the Pht1 Family of Phosphate Transporters in Glycine max. PloS One, 6: e19752.
33. Yannarelli, G. G., Noriega, G. O., Batlle, A. and Tomaro, M. L. 2006. Heme Oxygenase Up-regulation in Ultraviolet-B Irradiated Soybean Plants Involves Reactive Oxygen Species. Planta, 224: 1154-1162.
34. Zhang, Z. Y., Xing, A. Q., Staswick, P. and Clemente, T. E. 1999. The Use of Glufosinate as a Selective Agent in Agrobacterium-mediated Transformation of Soybean. Plant Cell Tiss. Org. Cult., 56: 37-46.
35. Zhou, J., Jiao, F. C., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W. and Wu, P. 2008. OsPHR2 is Involved in Phosphate-starvation Signaling and Excessive Phosphate Accumulation in Shoots of Plants. Plant Physiol., 146: 1673-1686.