Numerical Classification of Western Balkan Drought Tolerant Maize (Zea mays L.) Landraces

Authors
1 Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia.
2 Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrade, Serbia
3 Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
Abstract
Global warming and predictions of climatic changes additionally put breeding for drought tolerance in the focus of breeding programmes for maize. Extensive studies on the existing gene bank collection of the Maize Research Institute “Zemun Polje“ have been performed with the aim to identify and form initial sources for the development of maize inbreds more tolerant to drought. All accessions (about 6,000) were exposed to controlled drought stress in Egypt. Out of this number, approximately 8% of the tested genotypes were selected. In this study attention was given to 321 selected Western Balkan maize landraces, adapted to temperate climate growing conditions and the day length. Data derived from morphological characterization according to CIMMYT/IBPGR descriptors for maize, along with the application of numerical classification methods, were used to define homogeneous landraces groups based on morphological similarities. Results obtained from hierarchical and non-hierarchical analyses revealed the formation of 11 divergent groups. According to the obtained grain yield and visually scored stalk lodging and stay green, approximately 15% of the accessions from each of 11 groups were selected. Further investigations are towards defining their heterotic patterns and their possible utilization in developing and improving synthetic populations.

Keywords


1. Abadie, T., Magalhaes, J. R., Parentoni, S. N., Cordeiro, C. and Andrade, R. V. D. 1999. The Core Collection of Maize Germplasm of Brazil. Plant Gen. Res. Newsletter, 117: 55-56.
2. Agrama, H. A., Yan, W. G., Lee, F., Fjellstrom, R., Chen, M. H., Jia, M. and McClung, A. 2009. Genetic Assessment of a Mini-core Subset Developed from the USDA Rice Genebank. Crop. Sci., 49: 1336-1346.
3. Assenov, B., Andjelkovic, V., Ignjatovic-Micic, D., Vancetovic, J., Nikolic, A., Christov, N. K., Tsonev, S., Abu-Mhadi, N., Vassilev, D., Muhovski, Y., Ilchovska, M. and Todorovska, E. 2013. Identification of SNP Mutations in MYBE-1 Gene Involved in Drought Stress Tolerance in Maize. Bulg. J. Agric. Sci., 19: 181-185.
4. Babic, M., Anđelkovic, V., Mladenovic-Drinic, S. and Konstantinov, K. 2011. The Conventional and Contemporary Technologies in Maize (Zea mays L) Breeding at Maize Research Institut Zemun Polje. Maydica, 56: 155-164.
5. Babic, V., Vancetovic, J., Prodanovic, S., Andjelkovic, V., Babic, M. and Kravic, N. 2012a. The Identification of Drought Tolerant Maize Accessions by Two-Step Cluster Analysis. Rom. Agric. Res., 29: 53-61.
6. Babic, V., Andjelkovic, V., Babic, M., Pavlov, M., Kaitovic, Ž. and Filipović, M. 2012b. Role of Genetic Resources in Diversity Increment of Commercial Maize Hybrids. Proceeding of Third International Scientific Symposium: AGROSYM 2012, Jahorina, Bosnia and Herzegovina, PP. 97-103.
7. Berthaud, J. 1997. Strategies for Conservation of Genetic Resources in Relation with their Utilisation. In: “Special Issue: EUCARPIA Meeting on Tropical Crop Breeding”, (Eds.): Glaszmann J. C., Clerget B. and Schwendiman J.. Montpellier, France, 11-15 March. Euphytica, 96: 1-12.
8. Blasius, J. and Greenacre, M. 1998. Visualisation of Categorical Data. Academic Press, San Diego. PP 107-324.
9. Bridges, Jr. W. C. and Gardner, C. O. 1987. Foundation Populations for Adapted by Exotic Crosses. Crop Sci., 27: 501-506.
10. Brown, A. H. D. 1989. Core Collections: A Practical Approach to Genetic Resources Management. Genome, 31: 818-824.
11. Bull, J. K. and Hogarth, D. M. 1990. The Implications of Genotype×Environment Interactions for Evaluation of Sugarcane Families. Genotype-by-environment Interaction and Plant Breeding. Louisiana State University Agricultural Center LA 70803-2110, USA, 52 PP.
12. Cavalli-Sforoza, L. L., Menozzi, P. and Riazza, A. 1994. The History and Geography of Human Genes. Princeton University Press, USA. PP 374-376.
13. Crossa, J., DeLacy, I. H. and Taba, S. 1995. The Use of Multivariate Methods in Developing a Core Collection. In: “Core Collections Sources”, (Eds.): Hodgkin, T., Brown, A. H. D., Hintum, Th. J. L., Morales, E. A. V., John Wiley and Sons, New York, 77-92.
14. Everitt, B. S. 1980. Cluster Analysis. Quality and Quantity, 14: 75-100.
15. Gallais, A. and Monod, J. P. 1998. La Gestion des Resources Genetiques du Mais en France: De leur Caracterisation Jusqu aux Premiers Stades de leur Valorisation. Comptes Rendus del Academic Agriculture de France, 84: 173-181.
16. Greenacre, M. 1988. Corespondence Analysis of Multivariate Categorical Data by Weighted Least-squares. Biometrika, 75(3): 457-467.
17. Grillo, O., Miceli, C. and Venora, G. 2011. Computerised Image Analysis Applied to Inspection of Vetch Seeds for Varietal Identification. Seed Sci. Technol., 39(2): 490-500.
18. Hadi, G. 2005. Maize Varieties Grown in Eastern Central Europe between 1938 and 1983. Acta Agron. Hung., 52: 421-438.
19. Hu, J., Zhu, J. and Xu, H. M. 2000. Method for Constructing Core Collections by Stepwise Clustering with Three Sampling Strategies Based on the Genotypic Values of Crops. Theor. Appl. Genet., 101: 264-268.
20. IBPGR 1991. Descriptors for Maize. International Maize and Wheat Improvement Center, Mexico City/International Board for Plant genetic Resources, Rome. Available on: http://www.bioversityinternational.org/e-library/publications/detail/descriptors-for-maizedescriptores-para-maizdescripteurs-pour-le-mais/
21. Kannenberg, L. W. 2001. HOPE, a Hierarchical, Open-ended System for Broadening the Breeding Base of Maize. In: “Broadening the Genetic Base of Crop Production”, (Eds.): Cooper, H. D., Spillane, C. and Hodgkin, T.. CABI Publishing, Oxon, UK, 311 PP.
22. Khodarahmpour, Z., Choukan, R., Bihamta, M. R. and Majidi Hervan, E. 2011. Determination of the Best Heat Stress Tolerance Indices in Maize (Zea mays L.) Inbred Lines and Hybrids under Khuzestan Province Conditions. J. Agr. Sci. Tech. 13: 111-121.
23. Kovačić, J. Z. 1998. Multivarijaciona Analiza. Ekonomski Fakultet, Beograd. St. 131-175, PP. 206-240. (on Serbian)
24. Kravic, N., Markovic, K., Andjelkovic, V., Hadži-Taškovic Šukalovic, V., Babic, V. and Vuletic, M. 2013. Growth, Proline Accumulation and Peroxidase Activity in Maize Seedlings under Osmotic Stress. Acta Physiol. Plant., 35: 233-239.
25. Le Clerc, V., Bazante, F., Baril, C., Guiard, J. and Zhang, D. 2005. Assessing Temporal Changes in Genetic Diversity of Maize Varieties Using Microsatellite Markers. Theor. Appl. Genet., 110: 294-302.
26. Leng, E. R., Tavčar, A. and Trifunović, V. 1962. Maize of Southeastern Europe and Its Potential Value in Breeding Programs Elsewhere. Euphytica, 11(3): 263-272.
27. Malosetti, M. and Abadie, T. 2001. Sampling Strategy to Develop a Core Collection of Uruguayan Maize Landraces Based on Morphological Traits. Gen. Res. Crop Evol., 48: 381-390.
28. Milligan, G. W. and Cooper, M. C. 1985. An Examination of Procedures for Determining the Number of Clusters in Data Set. Psychometrika, 50: 159-179.
29. Mohammadi, S. A. and Prasanna, B. M. 2003. Analysis of Genetic Diversity in Crop Plants-salient Statistical Tools and Considerations. Crop Sci., 43(4): 1235-1248.
30. Nass, L. L. and Paterniani, E. 2000. Pre-breeding: A Link between Genetic Resources and Maize Breeding. Sci. Agric., 57(3): 581-587.
31. Pollak, L. M. 2003. The History and Success of the Public-private Project on Germplasm Enhancement of Maize (GEM). Adv. Agron., 78: 45-87.
32. Radovic, G. and Jelovac, D. 1994. The Possible Approach in Maize Core Collection Development. Evaluation and Exploitation of Genetic Resources: Pre-breeding. In Proc. of the Genetic Resources Section Meeting of Eucarpia,15-18 March 1994, Clermont-Ferrand, France, 1096 PP.
33. Reif, J. C., Hamrit, S., Hechenberger, M., Schipprack, W., Maurer, H. P., Bohn, M. and Melchinger, A. E. 2005. Trends in Genetic Diversity among European Maize Cultivars and Their Parental Components during the Past 50 Years. Theor. Appl. Genet., 111: 838-845.
34. Sevilla, R., Salhuana, W., Rubio, J., Avila, G., Paratori, O., Cardenas, F., Zhu, L. H., Pollak, L., Bejarano, A., Santos, M. X., Diaz, C., Fuentes, M., Sanchez, H., Ferrier, M. and Vivo, G. 1994. Latin America Maize Project: A Cooperative Genetic Resources Evaluation Project. In: “Evaluating and Exploitation of Genetic Resources, Pre-breeding”, (Eds.): Balfourier, F. and Perretant, M. B.. Proc. of the Genetic Resources Section Meeting of Eucarpia, 15-18 March, Clermont Ferrand, France, 289 PP.
35. Shaboon, A. E. M. 2004. Genetic Improvement via Selection in Maize. Dissertation, Faculty of Agriculture, University of Cairo.
36. Smykalova, I., Grillo, O., Bjelkova, M., Pavelek, M. and Venora, G. 2013. Phenotypic Evaluation of Flax Seeds by Image Analysis. Ind. Crop. Prod., 47: 232-238.
37. Smith, O. S., Smith, J. S. C., Bowen, S. L., Tenborg, R. A. and Wall, S. J. 1990. Similarities among a Group of Elite Maize Inbreds as Measured by Pedigree, Fl Grain Yield, Grain Yield Heterosis and RFLPs. Theor. Appl. Genet., 80: 833-840.
38. Southworth, J., Randolph, J., Harbeck, M., Doering, O., Pfeifer, R., Rao, D. and Johnston, J. 2000. Consequences of Future Climate Change and Changing Climate Variability on Maize Yields in the Midwestern United States. Agric. Ecosyst. Environ., 82: 139-158.
39. Spagnoletti Zeulli, P. L. and Qualset, C. O. 1993. Evaluation of Five Strategies for Obtaining a Core Subset from a Large Genetic Resource Collection of Durum Wheat. Theor. Appl. Genet., 87: 295-304.
40. Upadhyaya, H. D., Bramel, P. J., Ortiz, R. and Singh, S. 2002. Developing a Mini Core of Peanut for Utilization of Genetic Resources. Crop Sci., 42(6): 2150-2156.
41. Ward, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. Am. Stat. Ass. J., 56: 236-244.