Antidiabetic and Antioxidant Properties of Bilberry (Vaccinium myrtillus Linn.) Fruit and Their Chemical Composition

Authors
1 Department of Forest Industry Engineering, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey.
2 Faculty of Engineering, Department of Food Engineering, Giresun University, Giresun, Turkey.
3 Department of Medical Services and Techniques, Vocational High School of Health Services, Giresun University, Giresun, Turkey.
Abstract
Bilberry [Vaccinium myrtillus Linn. (Ericaceae)] fruit (VMF) has been traditionally used for treatment of bladder stones, biliary disorders, scurvy, coughs, and lung tuberculosis. VMF may have some pharmaceutical properties owing to these uses, but in vivo and in vitro studies are limited for clarification of medicinal activity and its antidiabetic and antioxidant properties are not investigated in detail. Anti-amylase, anti-glucosidase, and antioxidant activities of methanol (ME), ethanol (EE), acetone (AE), and water (WE) extracts of VMF were investigated. In addition, some chemical compositions were determined by using spectrophotometric methods. Antidiabetic and antioxidant activities of extracts were studied by using different tests such as α-amylase and α-glucosidase inhibitory, total antioxidant, DPPH scavenging activities according to in vitro methods at different concentrations (10-250 μg mL-1). Compared with the standards, ME, WE, and EE showed strong total antioxidant activities with IC50 (μg/mL) values of 24.46±0.34, 25.24±0.78, and 27.48±0.60, respectively. At the same time, ME (IC50 61.38±1.40 μg mL-1) and EE (IC50 65.52±1.19 μg mL-1) demonstrated very effective inhibitory activity against α-amylase and moderate inhibitory activity against α-glucosidase. All extracts also showed high reducing power, metal chelating activity, superoxide anion, DPPH radical, and H2O2 scavenging activities. Important relationships were found between biological activity and chemical composition by statistical analyses. The VMF can be used as an antidiabetic and antioxidant source in medicinal and pharmaceutical areas due to its chemical composition. Anthocyanin contents may influence the anti-amylase inhibition activity more than phenolic and flavonoid contents.

Keywords


1. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. 1993. Oxidants, Antioxidants, and the Degenerative Diseases of Aging. Proc. Natl. Acad. Sci. USA, 90: 7915-7922.
2. Ancerewicz, J., Migliavacca, E., Carrrupt, P. A., Testa, B., Bree, F., Zini, R., Tillement, J. P., Labidelle, S., Guyot, D., Chauvet-Monges, A. M., Crevat, A. and Le Ridant, A. 1998. Structure-property Relationships of Trimetazidine Derivatives and Model Compounds as Potential Antioxidants. Free Radical Bio. Med., 25:113-120.
3. Andersen, Ø. M. and Markham, K. R. 2006. Flavonoids: Chemistry, Biochemistry, and Applications. CRC Press, Broken Sound Parkway NW, pp. 472-473.
4. Baytop, T. 2000. Therapy with Medicinal Plants in Turkey: Past and Present. Nobel Tıp Press, İstanbul. PP. 124-125.
5. Bernfeld, P. 1955. Amylase, α and β, in Methods in Enzymology. (Eds.): Colowick, S. P. and Kaplan, N. O.. Academic Press, New York, USA, PP. 149-158.
6. Blois, M. S. 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 26:1199-1200.
7. Burdulis, D., Sarkinas, A., Jasutiene, I., Stackeviciene, E., Nikolajevas, L. and Janulis, V. 2009. Comparative Study of Anthocyanin Composition, Antimicrobial and Antioxidant Activity in Bilberry (Vaccinium myrtillus L.) and Blueberry (Vaccinium corymbosum L.) Fruits. Acta Pol. Pharm., 66: 399-408.
8. Chethan, S., Sreerama, Y. N. and Malleshi, N. G. 2008. Mode of Inhibition of Finger Millet Malt Amylases by the Millet Phenolics. Food Chem., 111: 187-191.
9. Chung, Y.C., Chang, C.T., Chao, W.W., Lin, C.F. and Chou, S.T. 2002. Antioxidative Activity and Safety of the 50% Ethanolic Extract from Red Bean Fermented by Bacillus subtilis IMR-NK1. J. Agr. Food Chem., 50: 2454-2458.
10. Dewanto, V., Wu, X., Adom, K. K. and Liu, R. H. 2002. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agr. Food Chem., 50: 3010-3014.
11. Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M. 1994. Action of Phenolic Derivates (Acetoaminophen, Salycilate, and 5-aminosalycilate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. Arch. Biochem. Biophys., 315:161-169.
12. Elmastaş, M., Gülçin, İ., Işildak, Ö., Küfrevioğlu, Ö. İ., İbaoğlu, K. and Aboul-Enein, H. Y. 2006. Radical Scavenging Activity and Antioxidant Capacity of Bay Leaf Extracts. J. Iran. Chem. Soc., 3: 258-266.
13. Faria, A., Oliveira, J., Neves, P., Gameiro, P., Santos-Buelga, C., Freitas, V. D. and Mateus, N. 2005. Antioxidant Properties of Prepared Blueberry (Vaccinium myrtillus) Extracts. J. Agric. Food Chem. 53: 6896-6902
14. Fuleki, T. and Francis, F.J. 1968. Determination of Total Anthocyanin and Degradation Index for Cranberry Juice. J. Food Sci., 33: 72-77.
15. Güder, A. and Korkmaz, H. 2012. Investigation of Antioxidant Activity and Total Anthocyanins from Blackberry (Rubus hirtus Waldst. and Kit) and Cherry Laurel (Laurocerasus officinalis Roem.). Asian J. Chem., 24: 4525-4531.
16. Güder, A., Engin, M. S., Yolcu, M. and Gür, M. 2014. Effect of Processing Temperature on the Chemical Composition and Antioxidant Activity of Vaccinium arctostaphylos Fruit and Their Jam. J. Food Proc. Preser. doi:10.1111/jfpp.12132
17. Gülçin, İ. 2010. Antioxidant Properties of Resveratrol: A Structure–activity Insight. Innov. Food Sci. Emerg. Tech., 11: 210-218.
18. Hall, C. A. and Cuppett, S. L. 1997. Structure-activities of Natural Antioxidants. In: “Antioxidant Methodology In vivo and In vitro Concepts”, (Eds.): Auroma, O. I. and Cuppett, S. L.. AOCS Press, Champaign, PP. 141-170.
19. Halliwell, B. and Gutteridge, J. M. C. 1984. Oxygen Toxicity, Oxygen Radicals, Transition Metals and Disease. Biochem. J., 219: 1-4.
20. Halliwell, B. 1991. Reactive Oxygen Species in Living Systems: Source, Biochemistry, and Role in Human Disease. Am. J. Med., 91: 14-22.
21. Hui, Y. H. 2006. Food Biochemistry and Food Processing. Blackwell Publ., Iowa, USA, PP. 16-17.
22. Inatani, R., Nakatani, N. and Fuwa, H. 1983. Antioxidative Effect of the Constituents of Rosemary (Rosemarinus officinalis L.) and Their Derivatives. Agric. Biol. Chem., 47: 521-528.
23. Kumar, P. S., Sucheta, S., Deepa, V. S., Selvamani, P. and Latha, S. 2008. Antioxidant Activity in the Some Selected Indian Medical Plants. Afr. J. Biotechnol., 7: 1826-1828.
24. Kunyanga, C. N., Imungi, J. K., Okoth, M. W., Biesalski, H. K. and Vadivel, V. 2012. Total Phenolic Content, Antioxidant and Antidiabetic Properties of Methanolic Extract of Raw and Traditionally Processed Kenyan Indigenous Food Ingredients. LWT-Food Sci. Technol., 45: 269-276.
25. Lim, K. T., Hu, C. and Kitss, D. D. 2001. Antioxidant Activity of a Rhus verniciflua Stokes Ethanol Extract. Food Chem. Toxicol., 39: 229-237.
26. Liu, F., Ooi, V. E. C. and Chang, S. T. 1997. Free Radical Scavenging Activity of Mushroom Polysaccharide extracts. Life Sci., 60: 763-771.
27. Maillard, M. N. and Berset, C. 1995. Evolution of Antioxidant Activity during Kilning, Role of Insoluble Bound Phenolic Acids of Barley and Malt. J. Agr. Food Chem., 43: 1789-1793.
28. Mansour, E., Ben Khaled, A., Lachiheb, B., Abid, M., Bachar, Kh. and Ferchichi, A. 2013. Phenolic Compounds, Antioxidant, and Antibacterial Activities of Peel Extract from Tunisian Pomegranate. J. Agr. Sci. Tech., 15: 393-1403.
29. Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N. and Matsumoto, K. 2001. Alpha-glucosidase Inhibitory Action of Natural Acylated Anthocyanins. 1. Survey of Natural Pigments with Potent Inhibitory Activity. J. Agric. Food Chem., 49: 1948-1951.
30. McCue, P., Kwon, Y. I. and Shetty, K. 2005. Anti-amylase, Anti-glucosidase and Anti-angiotensin I-converting Enzyme Potential of Selected Foods. J. Food Biochem., 29: 278-294.
31. Mitsuda, H., Yuasumoto, K. and Iwami, K. 1996. Antioxidation Action of Indole Compounds during the Autoxidation of Linoleic Acid. J. Jpn. Soc. Nutr. Food Sci., 19: 210-214.
32. Nickavar, B., Abolhasani, L. and Izadpanah, H. 2008. Alph-amylase Inhibitory Activities of Six Salvia Species. Iran. J. Pharm. Res., 7: 297-303.
33. Oyaizu, M. 1986. Studies on Product of Browning Reaction Prepared from Glucose Amine. Jpn. J. Nutr., 44: 307-315.
34. Puls, W. and Keup, U. 1973. Influence of an α-amylase Inhibitor (BAY d 7791) on Blood Glucose, Serum Insulin and NEFA in Starch Loading Tests in Rats, Dogs and Man. Diabetologia, 9: 97-101.
35. Ruch, R. J., Cheng, S. and Klaunig, J. E. 1989. Prevention of Cytotoxicity and Inhibition of Intracellular Communication by Antioxidant Catechins Isolated from Chinese Green Tea. Carcinogenesis, 10: 1003-1008.
36. Sadeghi, N., Jannat, B., Oveisi, M. R., Hajimahmoodi, M. and Photovat, M. 2009. Antioxidant Activity of Iranian Pomegranate (Punica granatum L.) Seed Extracts. J. Agr. Sci. Tech., 11: 633-638
37. Sales, P. M., Souza, P. M., Simeoni, L. A., Magalhães, P. O. and Silveira, D. 2012. Alpha-amylase Inhibitors: A Review of Raw Material and Isolated Compounds from Plant Source. Pharm. Pharma. Sci., 15: 141-183.
38. Salmanian, S., Mahoonak, A. R. S., Alami, M. and Ghorbani, M. 2014. Phenolic Content, Antiradical, Antioxidant, and Antibacterial Properties of Hawthorn (Crataegus elbursensis) Seed and Pulp Extract. J. Agr. Sci. Tech., 16: 343-354.
39. Shankaraiah, P. and Reddy, Y. N. 2011. Alpha-amylase Expressions in Indian Type-2 Diabetic Patients. J. Med. Sci., 11: 280-284.
40. Shukla, S., Chatterji, S., Mehta, S., Rai, P. K., Singh, R. K., Yadav, D. K. and Watal, G. 2011. Antidiabetic Effect of Raphanus sativus Root Juice. Pharm. Biol., 49: 32-37.
41. Soares, J. R., Dinis, T. C. P., Cunha, A. P. and Almeida, L. M. 1997. Antioxidant Activities of Some Extracts of Thymus zygis. Free Radical Res., 26: 469-478.
42. Steffen, L. M., Jacobs, J. D. R., Stevens, J., Shahar, E., Carithers, T. and Folsom, A.R. 2003. Associations of Whole-grain, Refined-grain, and Fruit and Vegetable Consumption with Risks of All-cause Mortality and Incident Coronary Artery Disease and Ischemic Stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr., 78: 383-390.
43. Vučić, D. M., Petković, M. R., Rodić-Grabovac, B. B., Stefanović, O. D., Vasić, S. M. and Čomić, L. R. 2013. Antibacterial and Antioxidant Activities of Bilberry (Vaccinium myrtillus L.) In vitro. Adv. Res. J. Microbiol., 1: 67-73.
44. Winterbourn, C. C. and Kettle, A. J. 2003. Radical-radical Reactions of Superoxide: A Potential Route to Toxicity. Biochem. Biophy. Res. Com., 305: 729-736.
45. Yang, J. H., Lin, H. C. and Mau, J. L. 2002. Antioxidant Properties of Several Commercial Mushrooms. Food Chem., 77: 229-235.