Reevaluation of Male Broiler Zinc Requirement by Dose-Response Trial Using Practical Diet with Added Exogenous Phytase

Authors
Department of Animal Science, College of Agriculture, University of Tehran, Karaj, Islamic Republic of Iran.
Abstract
Some reports indicate a wide range for Zn requirements for broiler chickens i.e. from 10.6 to 105 mg kg-1. A number of factors other than dietary Zn concentration determine the need for supplementation, principally dietary phytate. Therefore, the objective of the present investigation was reevaluation of the zinc requirement for broiler, fed practical diet supplemented with phytase in a dose-response trial. A total of 768 male Ross 308 broiler chicks were used. Basal corn-soy diet deficient in Zn was supplemented with experimental diets for making 16 dietary treatments. Experimental design was a completely randomized design in a 4×4 factorial arrangement. Factors included four levels of dietary zinc (24, 54, 84 and 114 mg kg-1) and phytase (0, 100, 200, 300 FTU kg-1). Treatments were replicated four times and each had 12 birds. Linear and nonlinear functions were derived for graded levels of zinc and phytase. Results indicated that effect of dietary zinc on body weight at 42 days of age was significant (P< 0.01). The fitted quadratic model estimated 66.7, 64.8, and 60.1 mg kg-1 zinc requirement for body weight at 28, 35, and 42 days of age, respectively (P< 0.001), while the fitted two slope broken line estimated 53.5, 53.8 and 57.4 mg kg-1 zinc requirement for body weight at the same ages, respectively (P< 0.002). Zinc equivalence value of phytase was estimated to be 0.225 mg kg-1 FTU-1 and added phytase increased liver zinc storage too (P< 0.01). Estimated zinc requirement for body weight by using practical high phytate diet, low availability source of Zn, and exogenous phytase was lower than Ross 308 recommendation (60 vs 100 mg kg-1).

Keywords


1. AminoDat 4.0 In: "50 Years Amino Acid Analysis". 2010. Evonik Industries, Germany, PP. 1-566.
2. Ammerman, B., Baker, D. H. and Austin, J. L. 1995. In: "Bioavailability of Nutrients for Animals Amino Acids, Minerals, and Vitamins". Academic Press, PP. 1-441.
3. Ao, T., Pierce, J. L., Pescatore, A. J., Cantor, A. H., Dawson, K. A., Ford, M. J. and Shafer, B. L. 2007. Effects of Organic Zinc and Phytase Supplementation in a Maize–soybean Meal Diet on the Performance and Tissue Zinc Content of Broiler Chicks. British Poul. Sci., 48: 690-695.
4. Ao, T., Pierce, J. L., Power, R., Dawson, K. A., Pescatore, A. J., Cantor, A. H. and Ford, M. J. 2006. Evaluation of Bioplex Zn as an Organic Zinc Source for Chicks. Intl. J. Poult. Sci., 5: 808-811.
5. AOAC. 1995. Official Methods of Analysis. 16th Edition, Association of Official Analytical Chemists, Arlington, VA.
6. Atwal, A. S., Eskin, N. A. M., McDonald, B. E. and Vasey-Genser, M. 1980. The Effects of Phytate on Nitrogen Utilization and Zinc Metabolism in Young Rats. Nutr. Rep. Int., 21: 257–267.
7. Aviagen Group Ltd. 2007. Ross 308: Broiler Management Manual. Aviagen, Newbridge, Midlothian EH28 8SZ, Scotland, UK.
8. Augspurger, N. R., Spencer, J. D., Webel, D. M. and Baker D. H. 2004. Pharmacological Zinc Levels Reduce the Phosphorus-releasing Efficacy of Phytase in Young Pigs and Chickens. J. Anim. Sci., 82: 1732–1739.
9. Batal, A. B., Parr, T. M. and Baker, D. H. 2001. Zinc Bioavailability in Tetrabasic Zinc Chloride and the Dietary Zinc Requirement of Young Chicks Fed a Soybean Concentrate Diet. Poult. Sci., 80: 87–90.
10. Bao, Y. M., Choct, M., Iji, P. A. and Bruerton, K. 2009. Optimal Dietary Inclusion of Organically Complexed Zinc for Broiler Chickens. British Poult. Sci., 50: 59-102.
11. Champagne, E. T. and Fisher, M. S. 1990. Binding Differences of Zn (II) and Cu (II) Ions with Phytate. J. Inorg. Biochem., 38: 217–223.
12. Cheryan, M. 1980. Phytic Acid Interactions in Food Systems. Crit. Rev. Food Sci. Nutr., 13: 297–335.
13. Dewar, W. A. and Downie, J. N. 1984. The Zinc Requirements of Broiler Chicks and Turkey Poulets Fed on Purified Diets. Br. J. Nutr., 51: 467−477.
14. Edwards, H. III, M. and Baker, D. H. 1999. Bioavailability of Zinc in Several Sources of Zinc Oxide, Zinc Sulfate, and Zinc Metal. J. Anim. Sci., 77: 2730−2735.
15. Emmert, J. L. and Baker, D. H. 1995. Zinc Stores in Chickens Delay the Onset of Zinc Deficiency Symptoms. Poult. Sci., 74: 1011−1021.
16. Gomes, P. C., Rigueira, D. C. M., Rostagno, H. S., Albino, L. F. T., Brumano, G. and Schmidt, T. M. 2008. Zinc Requirements for Male and Female Broilers in the Initial Phase. R. Bras. Zootec., 37: 79-83.
17. Huang, Y. L., Lu, L., Xie, J. J., Li, S. F., Li, X. L., Liu, S. B., Zhang, L. Y., Xi, L. and Luo, X. G. 2013. Relative Bioavailabilities of Organic Zinc Sources with Different Chelation Strengths for Broilers Fed Diets with Low or High Phytate Content. Anim. Feed Sci. Technol., 179: 144-148.
18. Formun Üstü
19. Huang, Y. L., Lu, L., Luo, X. G. and Liu, B. 2007. An Optimal Dietary Zinc Level of Broiler Chicks Fed a Corn-soybean Meal Diet. Poult. Sci., 86: 2582-2589.
20. Keith, A. M., Huang, C. C. and Fierke, C. A. 2000. Function and Mechanism of Zinc Metalloenzymes. J. Nutr., 130:14375-14465.
21. Kornegay, E. T. 2001. Digestion of Phosphorus and Other Nutrients: The Role of Phytases and Factors Influencing Their Activity. In: “Enzymes in Farm Animal Nutrition”. CABI Publishing, New York, NY, PP. 237–272
22. Lease, J. G. 1966. The Effect of Autoclaving Sesame Meal on Its Phytic Acid Content and on the Availability of Its Zinc to the Chick. Poult. Sci., 45: 237–241.
23. Lo, G. S., Settle, S. L., Steinke, F. H. and Hopkins, D. T. 1981. Effect of Phytate:Zinc Molar Ratio and Isolated Soybean Protein on Zinc Bioavailability. J. Nutr., 11: 2223–2235.
24. Lonnerdal, B., Sandberg, A. S., Sandstrom, B. and Kunz, C. 1989. Inhibitory Effects of Phytic Acid and Other Inositol Phosphates on Zinc and Calcium Absorption in Suckling Rats. J. Nutr., 119: 211–214.
25. Maenz, D. D., Engele-Schaan, C. M., Newkirk, R. W. and Classen, H. L. 1999. The Effect of Minerals and Mineral Chelators on the Formation of Phytase-resistant and Phytase-susceptible Forms of Phytic Acid in Solution and in a Slurry of Canola Meal. Anim. Feed Sci. Tech., 81: 177–192.
26. Mohanna, C. and Nys, Y. 1999. Effect of Dietary Zinc Content and Sources on the Growth, Body Zinc Deposition and Retention, Zinc Excretion and Immune Response in Chickens. British Poult. Sci., 40: 108–114.
27. Morris, E. R. 1986. Phytate and Dietary Mineral Bioavailability. In: “Phytic Acid Chemistry and Application”. Pilatus, Minneapolis, MN, PP. 57–76.
28. Morris, E. R. and Ellis, R. 1980. Effect of Dietary Phytate/Zinc Molar Ratio on Growth and Bone Zinc Response of Rats Fed Semipurified Diets. J. Nutr., 110: 1037–1045.
29. National Research Council (NRC). 1994. Committee on Animal Nutrition. Subcommittee on Poultry Nutrition: Nutrient Requirements of Poultry. 9th Edition, National Academy of Sciences, Washington, DC.
30. Oberleas, D. and Harland, B. F. 1996. Impact of Phytic Acid on Nutrient Availability. In: “Phytase in Animal Nutrition and Waste Management”. BASF Corp., Mount Olive, NJ, PP. 77–84.
31. O’Dell, B. L. and Savage, J. E. 1960. Effect of Phytic Acid on Zinc Availability. Proc. Soc. Exp. Biol. Med., 103: 304–306.
32. O’Dell, B. L. and Savage, J. E. 1957. Symptoms of Zinc Deficiency in the Chick. Proceed. Federation Soc., 16: 394.
33. Roberson, R. and Schaible, P. J. 1958. The Zinc Requirement of the Chick. Poult. Sci., 37: 1321–1323.
34. Robbins, K. R., Saxton, A. M. and Southern, L. L. 2006. Estimation of Nutrient Requirements Using Broken-line Regression Analysis. J. Anim. Sci., 84: E155-E165.
35. Rossi, P., Rutz, F., Anciuti, M. A., Rech, J. L. and Zauk, N. H. F. 2007. Influence of graded Levels of Organic Zinc on Growth Performance and Carcass Traits of Broilers. J. Appl. Poult. Res., 16:219–225.
36. SAS Institute. 2002. SAS/STAT User's Guide: Statistics. SAS Institute Inc., Cary, NC, USA.
37. Schlegel, P., Sauvant, D. and Jondreville, C. 2013. Bioavailability of Zinc Sources and Their Interaction with Phytates in Broilers and Piglets. Anim., 7(1): 47-59.
38. Schlegel, P., Nys, Y. And Jondreville, C. 2010. Zinc Availability and Digestive Zinc Solubility in Piglets and Broilers Fed Diets Varying in Their Phytate Contents, Phytase Activity and Supplemented Zinc Source. Anim., 4(2): 200-9.
39. Schutte, J. B. and Pack, M. 1995. Sulfur Amino Acid Requirement of Broiler Chicks from 14 to 38 Days of Age. I. Performance and Carcass Yield. Poult. Sci., 74: 480-487.
40. Steinruck, U. and Kirchgessner, M. 1993. Estimation of the Zinc Requirement for Broilers Using Their Ability for Selective Zinc Absorption and by Dose-response Relations. Arch. Tierenahr., 43:27-43.
41. Vieira, M. M., Ribeiro, A. M. L., Kessler, A. M., Moraes, M. L., Kunrath, M. A. and Ledur, V. S. 2013. Different Sources of Dietary Zinc for Broilers Submitted to Immunological Nutritional and Environmental Challenge. Appl. Poult. Res., 22: 855-861.
42. Wedekind, K. J. and Baker, D. H. 1990. Zinc Bioavailability in Feed-grade Sources of Zinc. J. Anim. Sci., 68: 684−689.
43. Xiudong, L., Ang, L. I., Lin L., Songbai, L. Sufen, L., Liyang, Z., Guangying, W. and Xugang, L. 2013. Optimal Dietary Zinc Levels of Broiler Chicks Fed a Corn–soybean Meal Diet from 22 to 42 Days of Age. Anim. Production Sci., 53: 388-394.
44. Yu, Y., Lu, L., Wang, R. L., Xi, L., Luo, X. G. and Liu, B. 2010. Effects of Zinc Source and Phytate on Zinc Absorption by In situ Ligated Intestinal Loops of Broilers. Poult. Sci., 89: 2157-65.
45. Zeigler, T. R., Leach, R. M., Norris, L. C. and Scott, M. L. 1961. Zinc Requirement of the Chick: Factors Affecting Requirement. Poult. Sci., 40: 1584−1593.