Polyamine Degradation Pathway Regulating Growth and GABA Accumulation in Germinating Fava Bean under Hypoxia-NaCl Stress

Authors
1 College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
2 College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
Abstract
In plants, γ-aminobutyric acid (GABA) is synthesized by polyamine degradation pathway besides GABA shunt. Aminoguanidine (AG) is a specific inhibitor of the key enzyme (diamine oxidase, DAO) for GABA formation in polyamine degradation pathway. In this study, AG was applied to study the functions of polyamine degradation pathway on growth and GABA accumulation in germinating fava bean under hypoxia-NaCl stress. The results showed that 5.0 mmol L-1 of AG inhibited DAO activity maximally but not entirely, and inhibited the growth of sprouts simultaneously. Hence, blocking polyamine degradation pathway significantly affected the growth of germinating fava bean. Polyamine degradation pathway provided 26.9 and 29.3% of GABA in cotyledon and embryo, respectively, because DAO activity was not inhibited entirely. Polyamine, especially putrescine (Put), accumulated after polyamine degradation pathway was blocked, indicating that Put was the main substrate of GABA in polyamine degradation pathway.

Keywords


1. Alcazar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P. and Tiburcio, A. F. 2010. Polyamines: Molecules with Regulatory Functions in Plant Abiotic Stress Tolerance. Planta, 231(6): 1237-1249.
2. Bai, Q. Y., Chai, M. Q., Gu, Z. X., Cao, X. H., Li, Y. and Liu, K. L. 2009. Effects of Components in Culture Medium on Glutamate Decarboxylase Activity and Gamma-aminobutyric Acid Accumulation in Foxtail Millet (Setaria italica L.) during Germination. Food Chem., 116(1): 152-157.
3. Bouchereau, A., Aziz, A., Larher, F.and Martin-Tanguy, J. 2009. Polyamines and Environmental Challenges: Recent Development. Plant Sci., 140(2): 103-125.
4. 4. Bown, A. W. and Shelp, B. J. 1997. The Metabolism and Functions of g-aminobutyric Acid. Plant Physiol., 115(1): 1-5.
5. Guo, Y., Chen, H., Song, Y. and Gu, Z. 2011. Effects of Soaking and Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Soybean (Glycine max L.). Eur. Food Res. Technol., 232: 787-795.
6. Guo, Y., Yang, R., Chen, H., Song, Y. and Gu, Z. 2012. Accumulation of γ-Aminobutyric Acid in Germinated Soybean (Glycine max L.) in Relation to Glutamate Decarboxylase and Diamine Oxidase Activity Induced by Additives under Hypoxia. Eur. Food Res. Technol., 234: 679-687.
7. 7. Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. and Kimura, T. 2007. Effect of Soaking and Gaseous Treatment on GABA Content in Germinated Brown Rice. J. Food Eng., 78(2): 556-560.
8. Kramer, D., Breitenstein, B., Kleinwachter, M. and Selmar, D. 2010. Stress Metabolism in Green Coffee Beans (Coffea arabica L.): Expression of Dehydrins and Accumulation of GABA during Drying. Plant Cell Physiol., 51(4): 546-553.
9. Li, Y., Bai, Q., Jin, X., Wen, H. and Gu, Z. 2010. Effects of Cultivar and Culture Conditions on γ-Aminobutyric Acid Accumulation in Germinated Fava Beans (Vicia faba L.). J. Sci. Food Agr., 90(1): 52-57.
10. Liu, J. and Liu, Y. L. 2004. The Relations between Polyamine Types and Forms and Polyamine Oxidase Activities in Barley Seedlings under Salt Stress. J. Plant Physiol. Mol. Biol., 30 (2): 141-146.
11. Mae, N., Makino, Y., Oshita, S., Kawagoe, Y., Tanaka, A., Aoki, K., Kurabayashi, A., Akihiro, T., Akama, K. and Koike, S. 2012. Accumulation Mechanism of γ-aminobutyric Acid in Tomatoes (Solanum lycopersicum L.) under Low O2 with and without CO2. J. Agr. Food Chem., 60(4): 1013-1019.
12. Matilla, A. J., Garcia, S. and Bueno, M. 2002. Diamine Oxidase Activity during the Germinative and Post-germinative Growth of the Embryonic Axis in Chickpea Seeds. Biol. Plantarum, 45(4): 551-556.
13. Mody, I., De Koninck, Y., Otis, T. and Soltesz, I. 1994. Bridging the Cleft at GABA Synapses in the Brain. Trends Neurosci., 17(12): 517-525.
14. Syu, K. Y., Lin, C. L., Huang, H. C. and Lin, J. K. 2008. Determination of Theanine, GABA, and Other Amino Acids in Green, Oolong, Black, and Pu-erh Teas with Dabsylation and High-performance Liquid Chromatography. J. Agr. Food Chem., 56(17): 7637-7643.
15. Tian, W., Suping, W., Shirong, G. and Hongbo, G. 2005. Changes of Polyamines Metabolism in Roots of Cucumber Seedlings under Root-zone Hypoxia Stress. Acta Hortic. Sinica, 32(3): 433-437.
16. Vuosku, J., Jokela, A., Laara, E., Saaskilahti, M., Muilu, R., Sutela, S., Altabella, T., Sarjala, T. and Haggman, H. 2006. Consistency of Polyamine Profiles and Expression of Arginine Decarboxylase in Mitosis during Zygotic Embryogenesis of Scots Pine. Plant Physiol., 142(3): 1027-1038.
17. Wakte, K. V., Kad, T. D., Zanan, R. L. and Nadaf, A. B. 2011. Mechanism of 2-acetyl-1-pyrroline Biosynthesis in Bassia latifolia Roxb. Flowers. Physiol. Mol. Biol. Plant., 17(3): 231-237.
18. Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A. and Roessner, U. 2009. Metabolic Responses to Salt Stress of Barley (Hordeum vulgare L.) Cultivars, Sahara and Clipper, which Differ in Salinity Tolerance. J. Exp. Bot., 60(14): 4089-4103.
19. Xing, S. G., Jun, Y. B., Hau, Z. W. and Liang, L. Y. 2007. Higher Accumulation of Gamma-aminobutyric Acid Induced by Salt Stress through Stimulating the Activity of Diarnine Oxidases in Glycine max (L.) Merr. Roots. Plant Physiol. Biochem., 45(8): 560-566.
20. Yang, R., Chen, H. and Gu, Z. 2011. Factors Influencing Diamine Oxidase Activity and γ-aminobutyric Acid Content of Fava Bean (Vicia faba L.) during Germination. J. Agr. Food Chem., 59(21): 11616-11620.
21. Yang, R., Chen, H., Han, Y. and Gu, Z. 2012. Purification of Diamine Oxidase and Its Properties in Germinated Fava Bean (Vicia faba L.). J. Sci. Food Agr., 92: 1709-1715.
22. Yang, R., Guo, Q. and Gu, Z. 2013. GABA Shunt and Polyamine Degradation Pathway on γ-aminobutyric Acid Accumulation in Germinating Fava Bean (Vicia faba L.) under Hypoxia. Food Chem., 136(1): 152-159.
23. Yang, R., Song, J., Gu, Z. and Li, C. 2011. Partial Purification and Characterisation of Cysteine Protease in Wheat Germ. J. Sci. Food Agr., 91: 2437-2442.
24. Yoda, H., Yamaguchi, Y. and Sano, H. 2003. Induction of Hypersensitive Cell Death by Hydrogen Peroxide Produced through Polyamine Degradation in Tobacco Plants. Plant Physiol., 132(4): 1973-1981.