1. Alcazar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P. and Tiburcio, A. F. 2010. Polyamines: Molecules with Regulatory Functions in Plant Abiotic Stress Tolerance. Planta, 231(6): 1237-1249.
2. Bai, Q. Y., Chai, M. Q., Gu, Z. X., Cao, X. H., Li, Y. and Liu, K. L. 2009. Effects of Components in Culture Medium on Glutamate Decarboxylase Activity and Gamma-aminobutyric Acid Accumulation in Foxtail Millet (Setaria italica L.) during Germination. Food Chem., 116(1): 152-157.
3. Bouchereau, A., Aziz, A., Larher, F.and Martin-Tanguy, J. 2009. Polyamines and Environmental Challenges: Recent Development. Plant Sci., 140(2): 103-125.
4. 4. Bown, A. W. and Shelp, B. J. 1997. The Metabolism and Functions of g-aminobutyric Acid. Plant Physiol., 115(1): 1-5.
5. Guo, Y., Chen, H., Song, Y. and Gu, Z. 2011. Effects of Soaking and Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Soybean (Glycine max L.). Eur. Food Res. Technol., 232: 787-795.
6. Guo, Y., Yang, R., Chen, H., Song, Y. and Gu, Z. 2012. Accumulation of γ-Aminobutyric Acid in Germinated Soybean (Glycine max L.) in Relation to Glutamate Decarboxylase and Diamine Oxidase Activity Induced by Additives under Hypoxia. Eur. Food Res. Technol., 234: 679-687.
7. 7. Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. and Kimura, T. 2007. Effect of Soaking and Gaseous Treatment on GABA Content in Germinated Brown Rice. J. Food Eng., 78(2): 556-560.
8. Kramer, D., Breitenstein, B., Kleinwachter, M. and Selmar, D. 2010. Stress Metabolism in Green Coffee Beans (Coffea arabica L.): Expression of Dehydrins and Accumulation of GABA during Drying. Plant Cell Physiol., 51(4): 546-553.
9. Li, Y., Bai, Q., Jin, X., Wen, H. and Gu, Z. 2010. Effects of Cultivar and Culture Conditions on γ-Aminobutyric Acid Accumulation in Germinated Fava Beans (Vicia faba L.). J. Sci. Food Agr., 90(1): 52-57.
10. Liu, J. and Liu, Y. L. 2004. The Relations between Polyamine Types and Forms and Polyamine Oxidase Activities in Barley Seedlings under Salt Stress. J. Plant Physiol. Mol. Biol., 30 (2): 141-146.
11. Mae, N., Makino, Y., Oshita, S., Kawagoe, Y., Tanaka, A., Aoki, K., Kurabayashi, A., Akihiro, T., Akama, K. and Koike, S. 2012. Accumulation Mechanism of γ-aminobutyric Acid in Tomatoes (Solanum lycopersicum L.) under Low O2 with and without CO2. J. Agr. Food Chem., 60(4): 1013-1019.
12. Matilla, A. J., Garcia, S. and Bueno, M. 2002. Diamine Oxidase Activity during the Germinative and Post-germinative Growth of the Embryonic Axis in Chickpea Seeds. Biol. Plantarum, 45(4): 551-556.
13. Mody, I., De Koninck, Y., Otis, T. and Soltesz, I. 1994. Bridging the Cleft at GABA Synapses in the Brain. Trends Neurosci., 17(12): 517-525.
14. Syu, K. Y., Lin, C. L., Huang, H. C. and Lin, J. K. 2008. Determination of Theanine, GABA, and Other Amino Acids in Green, Oolong, Black, and Pu-erh Teas with Dabsylation and High-performance Liquid Chromatography. J. Agr. Food Chem., 56(17): 7637-7643.
15. Tian, W., Suping, W., Shirong, G. and Hongbo, G. 2005. Changes of Polyamines Metabolism in Roots of Cucumber Seedlings under Root-zone Hypoxia Stress. Acta Hortic. Sinica, 32(3): 433-437.
16. Vuosku, J., Jokela, A., Laara, E., Saaskilahti, M., Muilu, R., Sutela, S., Altabella, T., Sarjala, T. and Haggman, H. 2006. Consistency of Polyamine Profiles and Expression of Arginine Decarboxylase in Mitosis during Zygotic Embryogenesis of Scots Pine. Plant Physiol., 142(3): 1027-1038.
17. Wakte, K. V., Kad, T. D., Zanan, R. L. and Nadaf, A. B. 2011. Mechanism of 2-acetyl-1-pyrroline Biosynthesis in Bassia latifolia Roxb. Flowers. Physiol. Mol. Biol. Plant., 17(3): 231-237.
18. Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A. and Roessner, U. 2009. Metabolic Responses to Salt Stress of Barley (Hordeum vulgare L.) Cultivars, Sahara and Clipper, which Differ in Salinity Tolerance. J. Exp. Bot., 60(14): 4089-4103.
19. Xing, S. G., Jun, Y. B., Hau, Z. W. and Liang, L. Y. 2007. Higher Accumulation of Gamma-aminobutyric Acid Induced by Salt Stress through Stimulating the Activity of Diarnine Oxidases in Glycine max (L.) Merr. Roots. Plant Physiol. Biochem., 45(8): 560-566.
20. Yang, R., Chen, H. and Gu, Z. 2011. Factors Influencing Diamine Oxidase Activity and γ-aminobutyric Acid Content of Fava Bean (Vicia faba L.) during Germination. J. Agr. Food Chem., 59(21): 11616-11620.
21. Yang, R., Chen, H., Han, Y. and Gu, Z. 2012. Purification of Diamine Oxidase and Its Properties in Germinated Fava Bean (Vicia faba L.). J. Sci. Food Agr., 92: 1709-1715.
22. Yang, R., Guo, Q. and Gu, Z. 2013. GABA Shunt and Polyamine Degradation Pathway on γ-aminobutyric Acid Accumulation in Germinating Fava Bean (Vicia faba L.) under Hypoxia. Food Chem., 136(1): 152-159.
23. Yang, R., Song, J., Gu, Z. and Li, C. 2011. Partial Purification and Characterisation of Cysteine Protease in Wheat Germ. J. Sci. Food Agr., 91: 2437-2442.
24. Yoda, H., Yamaguchi, Y. and Sano, H. 2003. Induction of Hypersensitive Cell Death by Hydrogen Peroxide Produced through Polyamine Degradation in Tobacco Plants. Plant Physiol., 132(4): 1973-1981.