Effects of Crop Residue Management and Nitrogen Fertilizer on Soil Nitrogen and Carbon Content and Productivity of Wheat (Triticum aestivum L.) in Two Cropping Systems

Authors
Department of Agronomy, University of Agriculture and Technology, GBPUAT, Pantnagar – 263142, India.
Abstract
The objective of this study was to investigate the effects of addition of pulses in crop sequences, crop residue management, and application of fertilizer N on soil nitrogen content, soil organic carbon, nutrient uptake, and its consequences for wheat yields. The field experiments were carried out from 2009 to 2012 in the sub-humid and sub-tropical zone of northern India. The treatments were (i) crop residue retained (+Residue) or (ii) removed (-Residue), (iii) 120 kg N ha-1 applied to wheat, (iv) 150 kg N ha-1 to maize, and (v) a control with no nitrogen applied to either wheat or maize. The cropping systems consisted of a rotation of wheat and maize or wheat and green gram. Postharvest incorporation of crop residues significantly (P< 0.05) increased the wheat grain and straw yields during 2010-2011 and 2011-2012. On average, crop residues incorporation increased the wheat grain yield by a factor of 1.31 and straw yield by 1.38. The wheat crop also responded strongly to the previous legume (green gram); grain yield increased by a factor of 1.89 and straw yield by 2.05, compared to the control. Application of fertilizer N to the preceding maize crop exerted a strong carryover effect on grain (1.18) and straw yield (1.26) wheat. Application of N fertilizer to wheat increased grain and straw yields by, respectively, a factor of 1.69 and 1.79 on average. The overall conclusion is that an improved crop residue management, combined with application of fertilizer N or incorporation of legumes greatly improves the N economy of cereal cropping systems and enhances crop productivity in soils with a low N content on the short term.

Keywords


1. Ahmad, N. 1998. Plant Nutrition Management for Sustainable Agricultural Growth in Pakistan. In Proceedings on Plant Nutrition Management for Sustainable Agricultural Growth, Planning and Development Division, National Fertilizer Development Centre, Govt. of Pakistan, December 8–10, 1997, Islamabad, PP. 11–24.
2. Ambast, S. K., Tyagi, N. K. and Raul, S. K. 2006. Management of Declining Groundwater in the Trans. Indo-Gangetic Plain (India): Some Options. Agric. Water Manage., 82: 279–296.
3. Badruddin, M. and Meyer, D. W. 1994. Grain Legume Effects on Soil Nitrogen, Grain Yield and Nutrition of Wheat. Crop Sci., 34: 1304–1309.
4. Bellido, R. J. L., Bellido, L. L. 2001. Efficiency of Nitrogen in Wheat under Mediterranean Condition: Effect of Tillage, Crop Rotation and N Fertilization. Field Crops Res., 71: 31-46.
5. Bremner, J. M. and Mulvaney, C. S. 1982. Nitrogen-total. Part II. Chemical and Microbiological Properties. In: “Methods of Soil Analysis”, (Eds.): Page, A. L., Miller, R. H. and Keeney, D. R.. Second Edition, American Society of Agronomy, Madison, WI, USA, PP. 595–624.
6. Bukert, A., Bationo, A. and Possa, K. 2000. Mechanism of Residue Mulch-induced Cereal Growth Increases in West Africa. Soil Sci. Soc. Am. J., 64: 1-42.
7. Bullock, D. G. and Bullock, D. S. 1992. Crop Rotation. Crit. Rev. Plant Sci., 11: 309–326.
8. Campbell, C. A., Zentner, R. P., Selles, F., Biederbeck, V. O. and Leyshon, A. J. 1992. Comparative Effects of Grain Lentil–wheat and Monoculture Wheat on Crop Production. N Economy and N Facility in a Brown Chernozem. Can. J. Plant Sci., 72: 1091–1107.
9. Chalk, P. M. 1998. Dynamics of Biologically Fixed N in Legume–cereal Rotations: A Review. Aust. J. Agric. Res., 49: 303–316.
10. Chalk, P. M., Smith, C. J., Hamilton, S. D. and Hopmans, P. 1993. Characterization of the N Benefit of a Grain Legume (Lupinus angustifolius L.) to a Cereal (Hordeum vulgare L.) by an In-situ 15N Isotope Dilution Technique. Biol. Fertil. Soils, 15: 39–44.
11. Clark, A. J., Decker, A. M., Meisinger, J. J. and McIntosh, M. S. 1997. Kill Rate of Vetch, Rye, and a Vetch–rye Mixture. II. Soil Moisture and Corn Yield. Agron. J., 89: 434–441.
12. CTIC, 2004. National Crop Residue Management Survey: 2002 Results. Conservation Technology Information Center, West Lafayette, IN. Available at: http://www.ctic.purdue.edu/CTIC/CRM.html
13. Dalal, R. C., Strong, W. M., Doughton, J. A., Weston, E. J., Copper, J. E., Wildermuth, G. B., Lehane, K. J., King, A. J. and Holmes, J. E. 1998. Sustaining Productivity of a Vertisol at Warra, Queens-Land, with Fertilizer, No-tillage or Legumes. 5. Wheat Yields Nitrogen Benefits and Water-use Efficiency of Vegetable Pea Rotation. Aust. J. Agric. Res., 38: 489–501.
14. Erenstein, O. 2009. Comparing Water Management in Rice–wheat Production Systems in Haryana, India and Punjab, Pakistan. Agric. Water Manage., 96: 1799– 1806.
15. Evans, J., Fettell, N. A., Coventry, D. R., O’Connor, G. E., Walsgott, D. N., Mahoney, J. and Armstrong, E. L. 1991. Wheat Response after Temperate Crop Legumes in Southeastern Australia. Aust. J. Agric. Res., 42: 31–43.
16. Feigenbaum, S., Seligman, N. G. and Benjamin, R. W. 1984. Fate of Nitrogen-15 Applied to Spring Wheat Grown for Three Consecutive Years in a Semi-arid Region. Soil Sci. Soc. Am. J., 48: 838–843.
17. Heenan, D. P. and Chan, K. Y. 1992. The Long-term Effects of Rotation, Tillage and Stubble Management on Soil Mineral Nitrogen Supply of Wheat. Aust. J. Agric. Res., 30: 977–988.
18. Herridge, D. F., Marcellos, H., Felton, W., Schwenke, G., Aslam, M., Ali, S., Shah, Z., Shah, S. H., Maskey, S., Bhuttari, S., Peoples, M. B. and Turner, G. 1995. Management of Legume N2 Fixation in Cereal System. A Research Program for Rainfed Areas of Pakistan, Nepal, and Australia. In Proceedings of IAEA/FAO Inter. Symp. on Nuc. and Related Tech. in Soil/Plant Studies on Sustainable Agriculture and Environmental Preservation, 1994, Vienna, Austria, PP. 237–250
19. Karlen, D. L., Varvel, G. E., Bullock, D. G. and Cruse, R. M. 1994. Crop Rotations for the 21st Century. Adv. Agron., 53: 1–45.
20. Keeney, D. R. and Nelson, D. W. 1982. Nitrogen-inorganic Forms. Parts II. Chemical and Microbiological Properties. In: “Methods of Soil Analysis”, (Eds.): Page, A. L., Miller, R. H., Keeney, D. R.. Agronomy No. 9, American Society of Agronomy, Madison, WI, PP. 643–698.
21. Kouyate, Z., Franzluebbers, K., Juo, A. S. R. and Hossner, L. 2000. Tillage, Crop Residue, Legume Rotation, and Green Manure Effects on Sorghum and Millet Yields in the Semiarid Tropics of Mali. Plant Soil, 225: 141–151.
22. Kumar, K. and Goh, K. M. 2002. Management Practices of Antecedent Leguminous and Non-leguminous Crop Residues in Relation to Winter Wheat Yield, Nitrogen Uptake, Soil Nitrogen Mineralization and Simple Nitrogen Balance. Eur. J. Agron., 16: 295–308.
23. Kuo, S. and Jellum, E. J. 2002. Influence of Winter Cover Crop and Residue Management on Soil Nitrogen Availability and Corn. Agron. J., 94: 501–508.
24. Lal, R. 1980. Soil Erosion as a Constraint to Crop Production. In Priorities for Alleviating Soil Related Constraints to Food Production in Tropics, Inst. Rice Res., Los Banos, PP. 405–423.
25. Lal, R., De Vleeschauwer, D. and Malfa Nganje, R. 1980. Changes in Properties of a Newly Cleared Tropical Alfisol as Affected by Mulching. Soil Sci. Soc. Am. J., 44: 827–833.
26. Langdale, G. W., Wilson, R. L. and Bruce, R. R. 1990. Cropping Frequencies to Sustain Long Term Conservation Tillage Systems. Soil Sci. Soc. Am. J., 54: 193–198.
27. Lopez-Bellido, L., Fuentes, M., Castillo, J. E., Lopez-Garrido, F. G. and Fernandez, E. J. 1996. Long-term Tillage, Crop Rotation, and Nitrogen Fertilizer Effects on Wheat Yield under Mediterranean Conditions. Agron. J., 88: 783–791.
28. Mason, M. G. and Rowland, I. C. 1990. Nitrogen Fertilizer Response of Wheat in Lupine–wheat, Subterranean Clover–wheat and Continuous Wheat Rotation. Aust. J. Agric. Res., 30: 231–236.
29. Maurya, P. R. and Lal, R. 1981. Effect of Different Mulch Materials on Soil Properties and the Root Growth and Yield of Maize (Zea mays) and Cowpea (Vigna unguiculata). Field Crop Res., 4: 33–45.
30. McDonald, G. K. 1989. The Contribution of Nitrogen Fertilizer to the Nitrogen Nutrition of Rainfed Wheat (Triticum aestivum) Crops in Australia: A Review. Aust. J. Agric., 29: 455–481.
31. McDonald, G. K., 1992. Effects of nitrogenous fertilizer on the growth, grain yield and grain protein concentration of wheat. Aust. J. Agric. Res., 43: 949–967.
32. Nelson, D. W. and Sommers, L. E. 1982. Total Carbon, Organic Carbon and Organic Matter. Part II. Chemical and Microbiological Properties. In: “Methods of Soil Analysis”, (Eds.): Page, A. L., Miller, R. H. and Keeney, D. R.. Second Edition, American Society of Agronomy, Madison, WI, USA, pp. 539–580.
33. Peoples, M. B. and Herridge, D. F. 1990. Nitrogen Fixation by Legumes in Tropical and Subtropical Agriculture. Adv. Agron., 44: 155–223.
34. Power, J. F., Kperner, P. T., Doran, J. W. and Wilhelm, W. W. 1998. Residual Effects of Crop Residue on Grain Production and Selected Soil Properties. Soil Sci. Soc. Am. J., 62: 1393–1397.
35. Ranells, N. N. and Wagger, M. G. 1996. Nitrogen Release from Grass and Legume Cover Crop Monocultures and Bicultures. Agron. J., 88: 777–782.
36. SAS Institute Inc., 1998. SAS Stat View Reference. Second Edition, SAS Institute, Cary, NC.
37. Smiley, R. W., Ingham, R. E., Uddin, W. and Cook, G. H. 1994. Crop Sequences for Managing Cereal Cyst Nematode and Fungal Pathogens of Winter Wheat. Plant Digest., 78: 1142–1149.
38. Spiertz, J. H. J. 2010. Nitrogen, Sustainable Agriculture, and Food Security. A Review. Agron. Sustain. Dev., 30: 43-55.
39. Staggenborg, S. A., Whitney, D. A., Fjell, D. L. and Shroyer, J. P. 2003. Seeding and Nitrogen Rates Required to Optimize Winter Wheat Yields Following Grain Sorghum and Soybean. Agron. J., 95: 253–259.
40. Stevenson, F. C. and Van Kessel, C. 1996. The Nitrogen and Non-nitrogen Benefits of Vegetable Pea to Succeeding Crops. Can. J. Plant Sci., 76: 735–745.
41. Surekha, K., Kumari Padma Kumari, A. P., Narayana Reddy, M., Satyanaarayana, K. and Sta Cruz, P. C. 2003. Crop Residue Management to Sustain Soil Fertility and Irrigated Rice Yields. Nutr. Cycl. Agroecosyst., 67: 145–154.
42. Ta, T. C. and Faris, M. S. 1987. Species Variation in the Fixation and Transfer Legumes to Associated Grasses. Plant Soil, 98: 265–274.
43. Tejada, M. and Gonzalez, J. L. 2003. Effects of the Application of a Compost Originating from Crushed Cotton Gin Residues on Wheat Yield under Dry Land Conditions. Eur. J. Agron., 19: 357–368.
44. Thakur, T. C. and Papal, S. S. 2005. Retrieval of Rice–wheat Straw after Combining: A Viable Solution for Accelerating Zero-till Technology and Promoting further Utilization of Straw. In: “Accelerating the Adoption of Resource Conservation Technologies in Rice–wheat System of the Indo-Gangetic Plains”, (Eds.): Malik, R. K., Gupta, R. K., Singh, C. M., Yadav, A., Brar, S. S., Thakur, T. C., Singh, S. S., Singh, A. K., Singh, R. and Sinha, R. K.. Proceedings of the Project Workshop, Directorate of Extension Education, CCS HAU, June 1–2, 2005, Hisar, Haryana, India, PP. 165–174.
45. Utomo, M., Frye, W. W. and Blevins, R. L. 1990. Sustaining Soil Nitrogen for Corn Using Hairy Vetch Clover Crop. Agron. J., 82: 979–983.