1. Alt, D. and Peters, I. 1992. Die CaCl2/DTPA-Methode zur Untersuchung gärtnerischer Erden auf Mengen- und Spurenelemente. Agribiol. Res., 45: 204–214.
2. Armitage, A. M. 1993. Bedding Plants. Prolonging Shelf Performance. Ball Publishing, Batavia, III, 71P.
3. Barber, S. A. 1995. Soil Nutrient Bioavailability: A Mechanistic Approach. Wiley, New York, PP. 85–110.
4. Barrachlough, P. B. and Tinker, P. B. 1981. The Determination of Ionic Diffusion Coefficients in Field Soils. I. Diffusion Coefficients in Sieved Soils in Relation to Water Content and Bulk Density. J. Soil Sci., 32: 225–236.
5. Bhadoria, P.B.S., Dessougi, H.E.I., Liebersbach, H. and Claassen, N. 2004. Phosphorus Uptake Kinetics, Size of Root System and Growth of Maize and Groundnut in Solution Culture. Plant Soil, 262(1-2): 327–336.
6. Borch, K., Miller, C., Brown, K. M. and Lynch, J. P. 2003. Improved Drought Tolerance in Marigold by Manipulation of Root Growth with Buffered-Phosphorus Nutrition. HortSci., 38: 212-216.
7. Claassen, N. and Steingrobe, B. 1999. Mechanistic Simulation Models for a Better Understanding of Nutrient Uptake from the Soil. In: "Mineral Nutrition of Crops: Fundamental Mechanisms and Implications", (Ed.): Rengel, Z.. The Haworth Press Inc., New York, London, Oxford, PP. 327-367.
8. Cox, D. 2001. Using Phosphorus Starvation to Regulate Growth. Greenhouse Product News, 11: 22-25.
9. Ehret, D. L., Zebarth, B. J., Portree, J. and Garland, T. 1998. Clay Addition to Soilless Media Promotes Growth and Yield of Greenhouse Crops. HortSci., 33: 67-70.
10. Föhse, D., Claassen, N. and Jungk, A. 1988. Phosphorous Efficiency of Plants. I. External and Internal P Requirement and P Uptake Efficiency of Different Plant Species. Plant Soil, 110: 101–109.
11. Gericke, V. S. and Kurmies, B. 1952. Die Kolorimetrische Phosphors-äurebestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Z. Pflanzenernähr Bodenk, 59: 235–245.
12. Jungk, A. and Claassen, N. 1997. Ion Diffusion in the Soil-root System. Adv. Agro., 61: 53-110.
13. Khandan-Mirkohi, A. and Schenk, M. K. 2008. Phosphorus Dynamics in Peat-based Substrates. J. Plant Nut. Soil Sci., 171: 804-809
14. Khandan-Mirkohi, A. and Schenk, M. K. 2009a. Phosphorus Efficiency of Ornamental Plants in Peat-substrates. J. Plant Nut Soil Sci., 172: 369–377.
15. Khandan-Mirkohi, A. and Schenk, M. K. 2009b. Characteristics of Phosphorus Uptake Kinetics of Poinsettia and Marigold. Scientia Hort., 122: 251–257.
16. Murphy, J. and Riley, J. P. 1962. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta, 27: 31–36.
17. Nye, P. H. 1979. Diffusion of Ions and Uncharged Solutes in Soils Clays. Adv. Agron., 31: 225–273.
18. SAS. 1996. SAS/STAT Software. Institute Inc., Cary, NC, USA.
19. Tennant, D. 1975. A Test of a Modified Line Intersect Method of Estimating Root Length. J. Ecol., 63: 995–1001.
20. Ulrich, A. 1952. Physiological Bases for Assessing the Nutritional Requirements of Plants. Annul. Rev. Plant Phys., 3: 207-228.
21. VDLUFA, 1991. Bestimmung der Rohdichte (Volumengewicht) von gärtnerischen Erden und Substraten ohne sperrige Komponenten. VDLUFA Methodenbuch, Band I. Die Untersuchung von Böden 4 Auflage, VDLUFA Verlag, Darmstadt.
22. Verhagen, J. 2004. Effectiveness of Clay in Peat Based Growing Media. Acta Hort., 644: 115–118.