Modeling Rehydration Behavior of Dried Figs

Authors
1 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
2 Fars Research Center for Agriculture and Natural Resources, Zarghan, Islamic Republic of Iran.
3 Department of Food Science and Technology, Faculty of Agriculture, Shiraz University, Shiraz, Islamic Republic of Iran.
Abstract
In this research, rehydration behavior of dried figs was studied at different temperatures (25, 60, 70, 80, and 90°C). The rehydration kinetic was examined using the four most frequently used empirical models, namely, Weibull, Peleg, first-order, and exponential association models. The Weibull model gave the highest coefficient of determination (R2) and the lowest values of root mean square error (RMSE), sum of squared error (SEE), and chi-square (χ2) was considered the best. In all models examined, the equilibrium moisture content showed statistically significant differences as compared to the rehydration temperature. The temperature dependence of kinetic constants was described in terms of Arrhenius relationship. The average activation energy for the four models was 24.362 kJ mol-1. During the rehydration process hardness of dried figs decreased, which was further confirmed by microscopic evaluation. Scanning electron microscopy (SEM) images of rehydrated figs indicated porous structure proposing the presence of free water.

Keywords


1. Abu-Ghannam, N. and McKenna, B. 1997. The Application of Peleg's Equation to Model Water Absorption during the Soaking of Red Kidney Beans (Phaseolus vulgaris L.). J. Food Eng., 32: 391-401.
2. Ansari, S., Farahnaky, A. and Majzoobi, M. 2011. Modelling the Effect of Glucose Syrup on the Moisture Sorption Isotherm of Figs. Food Biophys., 6(3): 377-389.
3. AOAC. 1990. Official Methods of Analysis. 15th Edition. Association of Official Analytical Chemist, Washington, DC, USA.
4. Cox, S., Gupta, S. and Abu-Ghannam, N. 2012. Effect of Different Rehydration Temperatures on the Moisture, Content of Phenolic Compounds, Antioxidant Capacity and Textural Properties of Edible Irish Brown Seaweed. LWT - Food Sci. Technol., 47: 300-307.
5. Cunningham, S. E., McMinn, W. A. M., Magee, T. R. A. and Richardson, P. S. 2007. Modelling Water Absorption of Pasta during Soaking. J. Food Eng., 82: 600-607.
6. FAOSTAT. 2010. Food and Agriculture Organization (FAO), Statistical Data. FAO. http://faostat.fao.org/site/339/default.aspx accessed on 21/04/2013.
7. Doymaz, I. 2005. Sun Drying of Figs: an Experimental Study. J. Food Eng., 71: 403–407.
8. Farahnaky, A., Ansari, S. and Majzoobi, M. 2009. Effect of Glycerol on the Moisture Sorption Isotherms of Figs. J. Food Eng., 93: 468-473.
9. Farahnaky, A., Ansari, S. and Majzoobi, M. 2010. Effects of Glucose Syrup and Glycerol on some Physichochemical Properties of Figs. J. Texture Stud., 41(5): 633-650.
10. Garcia-Pascual, P., Sanjuan, N., Melis, R. and Mulet, A. 2006. Morchella esculenta (Morel) Rehydration Process Modelling. J. Food Eng., 72: 346-353.
11. Garcia-Segovia, P., Andres-Bello, A. and Martinez-Monzo, J. 2011. Rehydration of Air-dried Shiitake Mushroom (Lentinus edodes) Caps: Comparison of Conventional and Vacuum Water Immersion Processes. LWT - Food Sci. Technol., 44: 480-488.
12. Goula, A. and Adamopoulos, K. 2009. Modeling the Rehydration Process of Dried Tomato. Dry. Technol., 27: 1078-1088.
13. Krokida, M. K. and Marinos-Kouris, D. 2003. Rehydration Kinetics of Dehydrated Products. J. Food Eng., 57: 1-7.
14. Lee, K. T., Farid, M. and Nguang, S.K. 2006. The Mathematical Modelling of the Rehydration Characteristics of Fruits. J. Food Eng., 72: 16-23.
15. Lin, T. M., Durance, T. and Scaman, C. H. 1998. Characterization of Vacuum Microwave, Air and Freeze Dried Carrot Slices. Food Res. Int., 31: 111-117.
16. Lopez, A., Pique, M., Clop, M., Tasias, J., Romero, A., Boatella, J. and Garcia, J. 1995. The Hygroscopic Behaviour of the Hazelnut. J. Food Eng., 25: 197–208.
17. Machado, M., Oliveira, F. and Cunha, L. 1999. Effect of Milk Fat and Total Solids Concentration on the Kinetics of Moisture Uptake by Ready-to-eat Breakfast Cereal. Int. J. Food Sci. Technol., 34: 47–57.
18. Magee, S. and Richardson, P. 2007. Modelling Water Absorption of Pasta during Soaking. J. Food Eng., 82: 600–607.
19. Maldonado, S., Arnau, E. and Bertuzzi, M. A. 2010. Effect of Temperature and Pretreatment on Water Diffusion during Rehydration of Dehydrated Mangoes. J. Food Eng., 96: 333-341.
20. Marabi, A., Livings, S., Jacobson, M. and Saguy, I. S. 2003. Normalized Weibull Distribution for Modeling Rehydration of Food Particulates. Eur. Food Res. Technol., 217: 311-318.
21. Marabi, A. and Saguy, I.S. 2004. Effect of Porosity on Rehydration of Dry Food Particulates. J. Sci. Food Agr., 84: 1105-1110.
22. Markowski, M. and Zielińska, M. 2011. Kinetics of Water Absorption and Soluble-Solid Loss of Hot-air-dried Carrots during Rehydration. Int. J. Food Sci. Tech., 46: 1122-1128.
23. Maskan, M. 2002. Effect of Processing on Hydration Kinetics of Three Wheat Products of the Same Variety. J. Food Eng., 52: 337–341.
24. Moreira, R., Chenlo, F., Chaguri, L. and Fernandes, C. 2008. Water Absorption, Texture, and Color Kinetics of Air-dried Chestnuts during Rehydration. J. Food Eng., 86: 584-594.
25. Mortezapour, H., Ghobadian, B., Khoshtaghaza, M. H. and Minaei, S. 2014. Drying Kinetics and Quality Characteristics of Saffron Dried with a Heat Pump Assisted Hybrid Photovoltaic-thermal Solar Dryer. J. Agr. Sci. Tech., 16(1): 33-45.
26. Mujic, I., Bavcon Kralj, M., Jokic, S., Jarni, K., Jug, T. and Prgomet, Z. 2012. Changes in Aromatic Profile of Fresh and Dried Fig: The Role of Pre-treatments in Drying Process. Int. J. Food Sci. Tech., 47: 2282-2288.
27. Noshad, M., Mohebbi, M., Shahidi, F. and Mortazavi, S. A. 2011. Kinetic Modeling of Rehydration in Air-dried Quinces Pretreated with Osmotic Dehydration and Ultrasonic. J. Food Process Pres., 36: 383-392.
28. Peleg, M. 1988. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci., 53: 1216-1217.
29. Resio, A. C., Aguerre, R. J. and Suarez, C. 2006. Hydration Kinetics of Amaranth Grain. J. Food Eng., 72: 247-253.
30. Sacchetti, G., Pittia, P., Biserni, M., Pinnavaia, G. G. and Rosa, M. D. 2003. Kinetic Modelling of Textural Changes in Ready-to-eat Breakfast Cereals during Soaking in Semi-skimmed Milk. Int. J. Food Sci. Tech., 38: 135–143.
31. Sanjuan, N., Carcel, J. A., Clemente, G. and Mulet, A. 2001. Modelling of the Rehydration Process of Brocolli Florets. Eur. Food Res. Technol., 212: 449–453.
32. Sharifian, F., Modarres Motlagh, A. and Nikbakht, A.M. 2012. Pulsed Microwave Drying Kinetics of Fig Fruit (Ficus carica L.). Aust. J. Crop Sci., 6(10): 1441-1447.
33. Slavin, J. L. 2006. Figs: Past, Present and Future. Nutr. Today, 41: 180–184.
45. Solomon, W. K. 2007. Hydration Kinetics of Lupin (Lupinus albus) Seeds. J. Food Process Eng., 30: 119-130.
46. Sopade, P. A., Ajisegiri, E. S. and Badau, M. H. 1992. The Use of Peleg's Equation to Model Water Absorption in Some Cereal Grains during Soaking. J. Food Eng., 15: 269-283.
47. Sopade, P. A. and Obekpa, J. A. 1990. Modelling Water Absorption in Soybean, Cowpea and Peanuts at Three Temperatures Using Peleg's Equation. J. Food Sci., 55: 1084-1087.
48. Turhan, M., Sayar, S. and Gunasekaran, S. 2002. Application of Peleg Model to Study Water Absorption in Chickpea during Soaking. J. Food Eng., 53: 153–159.
49. Veberic, R., Colaric, M. and Stampar, F. 2008. Phenolic Acids and Flavonoids of Fig Fruit (Ficus carica L.) in the Northern Mediterranean Region. Food Chem., 106: 153-157.
50. Vega-Gálvez, A., Notte-Cuello, E., Lemus-Mondaca, R., Zura, L. and Miranda, M. 2009. Mathematical Modelling of Mass Transfer during Rehydration Process of Aloe vera (Aloe barbadensis Miller). Food Bioprod. Process., 87: 254-260.
51. Vinson, J. A. 1999. The Functional Food Properties of Figs. Cereal Foods World, 44: 82-87.
52. Xanthopoulos, G., Yanniotis, S. and Lambrinos, G. R. 2010. Study of the Drying Behaviour in Peeled and Unpeeled Whole Fig. J. Food Eng., 97: 419-424.