A Comparative Study between Artificial Neural Networks and Adaptive Neuro-fuzzy Inference Systems for Modeling Energy Consumption in Greenhouse Tomato Production- A Case Study in Isfahan Province

Authors
1 Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
2 cDepartment of Software Engineering, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
3 Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia.
4 Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Islamic Republic of Iran.
5 Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract
In this study greenhouse tomato production was investigated from energy consumption and greenhouse gas (GHG) emission point of views. Moreover, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) were employed to model energy consumption for greenhouse tomato production. Total energy input and output were calculated as 1316.14 and 281.1 GJ/ha. Among the all energy inputs natural gas and electricity had the most significant contribution to the total energy input. Evaluations of GHG emission illustrated that the total GHG emission was estimated at 34758.11 kg CO2eq./ha and among all inputs, electricity played the most important role, followed by natural gas. Drawing a comparison between ANN and ANFIS models demonstrated that the ANFIS-based models due to employing fuzzy rules can model output energy more accurate than ANN models. Accordingly, Correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) for the best ANFIS architecture were calculated as 0.983, 0.025 and 0.149, respectively while these performance parameters for the best ANN model was computed as 0.933, 0.05414 and 0.279, respectively.

Keywords


1. Bagheri, M., Rajabi, M., Mirbagheri, M. and Amin, M. 2012. BPSO-MLR and ANFIS Based Modeling of Lower Flammability Limit. J. Loss Prevent Proc., 25: 373-382.
2. Banaeian, N., Omid, M. and Ahmadi, H. 2011. Energy and Economic Analysis of Greenhouse Strawberry Production in Tehran Province of Iran. Energ. Convers. Manage., 52:1020-1025.
3. Bektas Ekici, B. and Aksoy, U. T. 2011. Prediction of Building Energy Needs in Early Stage of Design by Using ANFIS. Expert Syst. Appl., 38: 5352-5358.
4. Benediktsson, J. A., Swain, P. H. and Ersoy, O. K. 1990. Neural Network Approaches versus Statistical Methods in Classification of Multisource Remote Senising. Trasact. Geosci. Remote Sens., 28: 540-552.
5. Canakci, M. and Akinci, I. 2006. Energy Use Pattern Analyses of Greenhouse Vegetable Production. Energy, 31: 1243-1256.
6. FAO. 2012. Food and Agriculture Organization. http://faostat.fao.org/site/339/default.aspx.
7. Ghobadian, B., Rahimi, H., Nikbakht, A. M., Najafi, G. and Yusaf, T. F. 2009. Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel with an Artificial Neural Network. Renew. Energ., 34: 976-982.
8. Hatirli, S.A., Ozkan, B. and Fert, C. 2006. Energy Inputs and Crop Yield Relationship in Greenhouse Tomato Production. Renew. Energ., 31: 427-438.
9. Heidari, M. D. and Omid, M. 2011. Energy Use Patterns and Econometric Models of Major Greenhouse Vegetable Productions in Iran. Energy, 36: 220-225.
10. Heidari, M. D., Omid, M. and Mohammadi, A. 2012. Measuring Productive Efficiency of Horticultural Greenhouses in Iran: A Data Envelopment Analysis Approach. Expert Syst. Appl., 39: 1040-1045.
11. Ho, Y. -C. and C. -T. Tsai. 2011. Comparing ANFIS and SEM in Linear and Nonlinear Forecasting of New Product Development Performance. Expert Syst. Appl., 38: 6498-6507.
12. Kaul, M., Hill, R. L. and Walthall, C. 2005. Artificial Neural Networks for Corn and Soybean Yield Prediction. Agr. Syst., 85: 1-18.
13. Khashei-Siuki, A., Kouchakzadeh, M. and Ghahraman, B. 2011. Predicting Dryland Wheat Yield from Meteorological Data Using Expert System, Khorasan Province, Iran. J. Agr. Sci. Tech., 13: 627-640.
14. Khoshnevisan, B., Bolandnazar, E., Barak, S., Shamshirband, S., Maghsoudlou, H., Altameem, T.A., Gani, A., A Clustering Model Based on an Evolutionary Algorithm for Better Energy Use in Crop Production. Stoch. Environ. Res. Risk. Assess., 1-15.2015 (DOI 10.1007/s00477-014-0972-6.
15. Khoshnevisan, B., Rajaeifar, M. A., Clark, S., Shamahirband, S., Anuar, N. B., Mohd Shuib, N. L., Gani, A., 2014. Evaluation of Traditional and Consolidated Rice Farms in Guilan Province, Iran, Using Life Cycle Assessment and Fuzzy Modeling. Sci. Total. Environ., 481: 242-251.
16. Kitani, O. 1999. CIGR: Handbook of Agricultural Engineering. In: "Energy Biomass Eng". ASAE Publication, St Joseph, MI, USA, PP.13-42.
17. Lal, R. 2004. Carbon Emission from Farm Operations. Environ. Int., 30: 981-990.
18. Lette, J., Colletti, B. W., Cerino, M., McNamara, D., Eybalin, M. C., Levasseur, A. and Nattel, S. 1994 Artificial Intelligence versus Logistic Regression Statistical Modelling to Predict Cardiac Complications after Noncardiac Surgery. Clin. Cardiol., 17: 609-614.
19. Lim, Y., Moon, Y. -S. and Kim, T. -W. 2007. Artificial Neural Network Approach for Prediction of Ammonia Emission from Field-applied Manure and Relative Significance Assessment of Ammonia Emission Factors. Eur. J. Agron., 26: 425-434.
20. Liu, M. and Ling, Y. Y. 2003. Using Fuzzy Neural Betwork Approach to Estimate Contractors’ Markup. Build. Environ., 38: 1303-1308.
21. Mousavi-Avval, S. H., Rafiee, S., Jafari, A. and Mohammadi, A. 2011. Optimization of Energy Consumption for Soybean Production Using Data Envelopment Analysis (DEA) Approach. Appl. Energ., 88: 3765-3772.
22. Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M. Y. and Alimardani, F. 2012. Application of ANFIS to Predict Crop Yield Based on Different Energy Inputs. Measurement, 45: 1406-1413.
23. Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D. R., Yusaf, T. F.and Faizollahnejad, M. 2009. Performance and Exhaust Emissions of a Gasoline Engine with Ethanol Blended Gasoline Fuels Using Artificial Neural Network. Appl. Energ., 86: 630-639.
24. Nassiri1, S. M. and Singh, S. 2010. A Comparative Study of Parametric and Non-Parametric Energy Use Efficiency in Paddy Production. J. Agr. Sci. Tech., 12: 391-399.
25. Nemecek, T. and Kagi, T. 2007. Life Cycle Inventories of Agricultural Production Systems. Agrosope Reckenhols, Tanikon Research Station ART, Zurich and Dubendorf.
26. Omid, M., Ghojabeige, F., Delshad, M. and Ahmadi, H. 2011. Energy Use Pattern and Benchmarking of Selected Greenhouses in Iran Using Data Envelopment Analysis. Energ. Convers. Manage., 52: 153-162.
27. Ozkan, B., Ceylan, R. F. and Kizilay, H. 2011. Energy Inputs and Crop Yield Relationships in Greenhouse Winter Crop Tomato Production. Renew. Energ., 36: 3217-3221.
28. Pahlavan, R., Omid, M. and Akram, A. 2011. Energy Use Efficiency in Greenhouse Tomato Production in Iran. Energy, 36: 6714-6719.
29. Pahlavan, R., Omid, M. and Akram, A. 2012. Application of Data Envelopment Analysis for Performance Assessment and Energy Efficiency Improvement Opportunities in Greenhouses Cucumber Production. J. Agr. Sci. Tech., 14: 1465-1475.
30. Pahlavan, R., Omid, M. and Akram, A. 2012. Energy Input–output Analysis and Application of Artificial Neural Networks for Predicting Greenhouse Basil Production. Energy, 37: 171-176.
31. Pahlavan, R., Omid, M. and Akram, A. 2012. The Relationship between Energy Inputs and Crop Yield in Greenhouse Basil Production. J. Agr. Sci. Tech., 14: 1243-1253.
32. Petković, D., Pavlović, N. T., Shamshirband, S., Mat Kiah, M. L., Badrul Anuar, N. and Idna Idris, M. Y. 2014. Adaptive Neuro-fuzzy Estimation of Optimal Lens System Parameters. Opt. Laser Eng., 55: 84-93.
33. Pishgar-Komleh, S. H., Ghahderijani, M.and Sefeedpari, P. 2012. Energy Consumption and CO2 Emissions Analysis of Potato Production Based on Different Farm Size Levels in Iran. J. Clean Prod., 33: 183-191.
34. Rafiee, S., Mousavi Avval, S. H. and Mohammadi, A. 2010. Modeling and Sensitivity Analysis of Energy Inputs for Apple Production in Iran. Energy, 35: 3301-3306.
35. Razi, M. A. and Athappilly, K. 2005. A Comparative Predictive Analysis of Neural Networks (NNs), Nonlinear Regression and Classification and Regression Tree (CART) Models. Expert Syst. Appl., 29: 65-74.
36. Safa, M. and Samarasinghe, S. 2011. Determination and Modelling of Energy Consumption in Wheat Production Using Neural Networks: “A Case Study in Canterbury Province, New Zealand”. Energy, 36: 5140-5147.
37. Shamshirband, S., Kalantari, S. and Bakhshandeh, Z. 2010. Designing a Smart Multi-agent System Based on Fuzzy Logic to Improve the Gas Consumption Pattern. Sci. Res. Essays, 5: 592–605.
38. Shamshirband, S., Petković, D., Ćojbašić, Ž., Nikolić, V., Anuar, N. B., Mohd Shuib, N. L., Mat Kiah, M. L. and Akib, S. 2014. Adaptive Neuro-fuzzy Optimization of Wind Farm Project Net Profit. Energ. Convers. Manage., 80: 229-237.
39. Singh, H., Mishra, D. and Nahar, N. M. 2002. Energy Use Pattern in Production Agriculture of a Typical Village in Arid Zone, India. Part I. Energ. Convers. Manage., 43: 2275-2286.
40. Tabatabaie, S. M. H., Rafiee, S., Keyhani, A. and Ebrahimi, A. 2013. Energy and Economic Assessment of Prune Production in Tehran Province of Iran. J. Clean Prod., 39: 280-284.