QTLs Involved in Plant Height, Peduncle Length and Heading Date of Wheat (Triticum aestivum L.)

Authors
1 Department of Crop Production and Plant Breeding, School of Agriculture, Shiraz University
2 Department of Agronomy and Plant Breeding ,College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
3 Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
4 Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibraki 305-8686, Japan.
Abstract
In order to locate the QTLs for plant height, peduncle length, and heading date, a set of 107 wheat doubled haploid (DH) lines derived from the cross Fukuho-komugi× Oligoculm was grown during the growing seasons of 2004 and 2005. A total of 36 QTLs were identified based on composite interval mapping (CIM) approach. All detected plant height QTL’s were stable over the two years. QTLs located near RhtD1 (chromosome 4D) and in the Xta556-RhtB1 interval (chromosome 4B) accounted for, respectively, 40.1% and 28.9% of plant height variation in 2004 and 30.7% and 26.36% in 2005. The other two QTLs identified for plant height were located near Xcfd53 and Xwmc25a loci on chromosome 2D. The results of composite interval mapping indicated that all detected QTLs for peduncle length were coincident with plant height QTLs. Of the most important heading date QTLs, the only stable one over years was located in the Xcfd53-Xbarc168 interval on chromosome 2D and accounted for 34.05% and 31.9% of heading date variation in 2004 and 2005, respectively. The Xbarc168-Xgwm484 interval (LOD> 8.3) carried the other important QTL for heading date in 2004. In general, based on expression of stable and major effect QTLs in present study, it is possible to increase efficiency of marker assisted selection for the traits in breeding programs.

Keywords


1. Atsmon, D. and Jacobs, E. 1977. A Newly Bred ‘Gigas’ Form of Bread Wheat (Triticum aestivum L.): Morphological Features and Thermo-Photoperioid Response. Crop Sci., 17: 31-35.
2. Börner, A., Plaschke, J., Korzun, V. and Worland, A. J. 1996. The Relationships between Dwarfing Genes of Wheat and Rye. Euphyt., 89: 69-75.
3. Börner, A., Schumann, E., Fürste A., Cöster, H., Leithold, B., Röder, M. S. and Weber, W. E. 2002. Mapping of Quantitative Trait Loci Determining Agronomic Important Characters in Hexaploid Wheat (Triticum aestivum L.). Theor. Appl. Genet., 105: 921-936.
4. Börner, A., Worland, A. J., Plaschke, J., Schumann, E. and Law, C. N. 1993. Pleiotropic Effects of Genes for Reduced Height (Rht) and Day Length Insensitivity (Ppd1) on Yield and Its Components for Wheat Grown in Midlle Europe. Plant Breed., 111: 204-216.
5. Bullrich, L., Appendino, M. L., Tranquilli. G., Lewis. S. and Dubcovsky, J. 2002. Mapping of a Thermo-sensitive per se Genes on Triticum monococcum Chromosome 1Am. Theor. Appl. Genet., 105: 585-593.
6. Cadalen, T., Sourdille, P., Charmet, G., Tixier, M. H., Gay, G., Boeuf, C., Bernard, S., Leory, P. and Bernard, M. 1998. Molecular Markers Linked to Genes Affecting Plant Height in Wheat Using a Doubled Haploid Population. Theor. Appl. Genet., 96; 933-940.
7. Churchill, G. A. and Doerge, R. W. 1994. Empirical Threshold Values for Quantitative Trait Mapping. Genetics, 138: 938-971.
8. Doerge, R. W. and Churchill, G. A. 1996. Permutation Test for Multiple Loci Affecting a Quantitative Character. Genetics, 142: 285-294.
9. Huang, X. Q. and Roder, M. S. 2004. Molecular Mapping of Powdery Mildew Resistance Genes in Wheat: A Review. Euphyt., 137: 203-223.
10. Ellis, M. H., Bonnett, D. G. and Rebetzke, G. J. 2007. A 192bp Allele at the Xgwm261 Locus Is Not Always Associated with the Rht8 Dwarfing Gene in Wheat (Triticum aestivum L.). Euphyt., 157: 209-214.
11. Ellis, M. H., Spielmeyer, W., Gale, K. R., Rebetzke, G. J. and Richards, R. A. 2002. Perfect Markers for the Rht-B1b and Rht-D1b Dwarfing Genes in Wheat. Theor. Appl. Genet., 105: 1038-1042.
12. Huang, L., Brooks, S. A., Li. W. L., Fellers, J. P., Trick, H. N. and Gill, B. S. 2003. Map-based Cloning of Leaf Rust Resistance Gene Lr21 From the Large and Polyploid Genome of Bread Wheat. Genetics, 164: 655-664.
13. Jiang, C. and Zeng, Z. B. 1995. Multiple-trait Analysis of Genetic Mapping for Quantitative Trait Loci. Genetics, 140: 1111-1127.
14. Kammahloz, S. J., Campbell, A. W., Sutherland, M. W., Hollamby, G. J., Martin, P. J., Eastwood, R. F., Barclay, I., Wilson, R. E., Brennan, P. S. and Sheppard, J. A. 2001. Establishment and Characterization of Wheat Genetic Mapping Population. Aust. J. Agric. Res., 52: 1079-1088.
15. Kearsey, M. J. and Pooni, H. S. 1996. The Genetical Analysis of Quantitative Traits. Chapman and Hall, London, UK, 380 PP.
16. Kosambi, D. D. 1944. The Estimation of Map Distances from Recombination Values. Ann Eugen., 12: 172-175.
17. Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E. and Newburg, L. 1987. MAPMAKER: An Interactive Computer Package for Constructing Primary Genetic Linkage Maps of Experimental and Natural Populations. Genome, 1: 174-181.
18. Laurie, D. A. 1997. Comparative Genetics of Flowering Time. Plant Mol. Biol., 35: 167-177.
19. Law, C. N., Worland, A. J. and Giorgi, B. 1975. The Genetic Control of Ear Emergence Time by Chromosome 5A and 5D of Wheat. Heredity 36: 49-58.
20. Lin, Y. R., Schertz, K. F. and Paterson, A. H. 1995. Comparative Analysis of QTLs Affecting Plant Height and Maturity across the Poaceae, in Reference to an Interspecific Sorghum Population. Genetics, 141: 391-411.
21. Marza, F., Bai, G. H., Carver, B. F. and Zhou, W. C. 2006. Quantitative Trait Loci for Yield and Related Traits in Wheat Population Ning7840×Clark. Theor. Appl. Genet., 112: 688-698.
22. McCartney, C. A., Somers, D. J., Humphreys, D. G., Lukow, O, Ames, N., Noll, J., Cloutier, S. and McCallum, B. D. 2005. Mapping Quantitative Trait Loci Controlling Agronomic Traits in Spring Wheat Cross RL4452בAC Domain’. Genome, 48: 870-883.
23. Newbury, H. J. 2003. Plant Molecular Breeding. CRC Press. USA/Canada.
24. Rabiei, B. 2007. Linkage Map of SSR Markers and Qtls Detection for Heading Date of Iranian Rice Cultivars. J. Agric. Sci. Technol., 9:235-242.
25. Rami, J. F., Dufour, P., Trouche, G., Fliedel, G., Mestres, C., Davrieux, F., Blanchard, P. and Hamon, P. 1998. Quantitative Trait Loci for Grain Quality, Productivity, Morphological and Agronomical Traits in Sorghum (Sorghum bicolor L. Moench). Theor. Appl. Genet., 97: 605-616.
26. Rebetzke, G. J., Apples, R., Morrison, A. D., Richard, R. A., McDonald, G., Ellis, M. H., Spielmeyer, W. and Bonnett, D. G. 2001. Quantitative Trait Loci on Chromosome 4B for Coleoptile Length and Early Vigour in Wheat (Triticum aestivum L.). Aust. J. Agric. Res., 52: 1221-1234.
27. Sarma, R. N., Fish, L., Gill, B. S. and Snape, J. W. 2000. Physical Characterization of the Homoeologous Group 5 Chromosomes Of Wheat in Terms of Rice Linkage Blocks, And Physical Mapping of Some Important Genes. Genome, 43: 191-198.
28. SAS Institute. 2000. The SAS System for Windows. Release 8.01, SAS Inst. Inc., Cary, NC.
29. Shindo, C., Tsujimoto, H. and Sasakuma, S. 2003. Segregation Analysis of Heading Traits in Hexaploid Wheat Utilizing Recombinant Inbred Lines. Heredity, 90: 56-63.
30. Snape, J. W., Butterworth, K., Whitechurch, E. and Worland, A. J. 2001. Waiting for Fine Times: Genetics of Floweing Time in Wheat. Euphyt., 119: 185-190.
31. Sourdille, P., Calden, T., Guyomarc’h, H., Snap, G. W., Perretnat, M. R., Chamert, G., Boeuf , C., Bernard, S. and Bernard, M. 2003. An Update of Courtot×Chinese Spring Intervarietal Molecular Marker Linkage Map for the QTL Detection of Agronomic Traits in Wheat. Theor. Appli. Genet., 106: 530-538.
32. Sourdille, P., Snape, J. W., Cadalen, T., Chamert, G. M., Nakata, N., Bernard, S. and Bernard, B. 2000. Detection of QTLs for Heading Time and Photoperiod Response in Wheat Using a Doubled Haploid Population. Genome, 43: 478-494.
33. Suenaga, K., Khairallah, M., William, H. M. and Hoisington, D.A. 2005. A New Intervarietal Linkage Map and Its Application for Quantitative Trait Locus Analysis of "Gigas" Features in Bread Wheat. Genome, 48: 65-75.
34. Suenaga, K. and Nakajima, K. 1993. Segregation of Genetic Markers Among Wheat Doubled Haploid Lines Derived from Wheat×Maize Crosses. Euphyt., 65: 145-152.
35. Suenaga, K., Singh, R. P., Hureta, J. and William, H. M. 2003. Microsatellite Markers for Genes Lr34/Yr18 and Other Quantitative Trait Loci for Leaf Rust and Strip Rust Resistance in Bread Wheat. Amer. Phytopat. Soc. 7: 881-889.
36. Toth, B., Galiba, G., Fehr, E., Sutka, J. and Snape, J. W. 2003. Mapping Genes Affecting Flowering Time and Frost Resistance on Chromosome 5B of Wheat. Theor. Appl. Genet., 107: 509-514.
37. Van Ooijen, J. W. and Voorrips, R. E. 2001. JoinMap® 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, the Netherlands.
38. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, V. D., Hornes, M., Frijers, A. M., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. "AFLP: A New Technique for DNA Fingerprinting". Nucleic Acid Res., 23: 4407-4414.
39. Wang, S., Basten, C. J. and Zeng, Z. B. 2007. Windows QTL Cartographer V2.5 User manual. Bioinformatic Research Center, North Carolina State University, USA.
40. Worland, A. J. 1996. The Influence of Flowering Time Genes on Environmental Adaptability in European Wheat. Eyphyt., 89: 49-57.
41. Worland, A. J., Krozun, V., Roder, M. S., Ganal, M. W. and Law, C. N. 1998. Genetic Analysis of the Dwarfing Gene Rht8 in Wheat. Part II. The Distribution and Adaptive Significance of Allelic Variation at the Rht8 Locus of Wheat as Revealed by Microsatellite Screening. Theor. Appl. Genet., 96: 1110-1120.
42. Xu, X., Bai, G., Carver, B. and Shaner, E. 2005. A QTL for Early Heading in Wheat Cultivar Suwon 92. Euphyt., 146: 233-237.
43. Zeng, Z. B. 1994. Precision Mapping of Quantitative Trait Loci. Genetics, 136: 1457-1468.
44. Zhang, K., Tian, J., Zhao, L., Liu, B. and Chen, G. 2009. Detection of Quantitative Trait Loci for Heading Date Based on the Doubled Haploid Progeny of Two Elite Chinese Wheat Cultivars. Genetica, 135: 257-265.