Thermal Conductivity of Feed Pellets

Authors
Department of Agricultural Machinery, College of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336
Abstract
Application of feed pellets in animal and aquatic farming industries has grown because of both the physical and the nutritional benefits it provides. Development of feed pellets manufacturing industry is also considerable. Steam conditioning process, which plays an important role in pelleting production, includes heating feed particles, adding moisture, and mixing the mash. Pellets cooling and drying processes are also involved in heat transfer phenomena. In this study, thermal conductivity of feed pellets was determined at different temperatures ranging from 25 to 85°C and moisture contents of 11.8 to 18.2% wb. It was measured by the transient technique using the line heat source method assembled in a thermal conductivity probe. It turned out that decreasing moisture contents from 18.2 to 11.8% (wb) produced non-linear reduction in thermal conductivity. The average values of thermal conductivity changed from 0.1509 to 0.2143 W m-1 °C-1 at different moisture contents. Tests conducted on two pellet size categories (based on nominal diameter) revealed a significant difference in thermal conductivity between these categories. The thermal conductivities of the first category (minor than nominal dia.) appeared to be 8.5% higher than those of the second category (superior to nominal dia.). Average values of thermal conductivity changed from 0.1538 to 0.2333 W m-1 °C-1 for the first category and from 0.1235 to 0.2456 W m-1 °C-1 for the second category (in 25°C). In addition, some empirical models were developed to express thermal properties as a function of moisture content and temperature.

Keywords


1. ASAE Standards. 2002. Cubes, Pellets, and Crumbles: Definitions and Methods for Determining Density, Durability and Moisture Content. Standard S269.4, Am. Soc. Agric. Eng., Yearbook of Standards, MI, USA, 563 PP.
2. Behnke, K. C. 1996. Feed Manufacturing Technology: Current Issues and Challenges. Anim. Feed Sci. Technol., 62:49-57.
3. Bhadra, R., Muthukumarappan, K. and Rosentrater, K. A. 2010. Effects of Varying CDS Levels and Drying and Cooling Temperatures on Flowability Properties of DDGS. ASABE Paper No. 1008604. ASABE, St. Joseph, MI, USA.
4. Christoffel, D. A. and Calhaem, I. M. 1979. A Geothermal Heat Flow Probe for In situ Measurement of Both Temperature Gradient and Thermal Conductivity. J. Phys. E: Sci. Instrum., 24: 57- 69
5. Deshpande, S. D., Bal, S. and Ohja, T. P. 1996. Bulk Thermal Conductivity and Diffusivity of Soybean. J. Food Process. Pres., 20: 177-189.
6. Gilpin, A. S., Herrman, T. J., Behnke, K. C. and Fairchild, F. J. 2002. Feed Moisture, Retention Time, and Steam as Quality and Energy Utilization Determinants in the Pelleting Process. Appl. Eng. Agr., 18: 331–338
7. Hsu, M. H., Mannapperuma, J. D. and Singh, R. P. 1991. Physical and Thermal Properties of Pistachios. J. Agr. Eng. Res., 49:311-321.
8. Incropera, F. P. and DeWitt, D. P. 2006. Fundamentals of Heat and Mass Transfer. 6th Edition, John Wiley and Sons, Inc. New York, PP. 274-253
9. Kannadhason, S., Muthukumarappan, K. and Rosentrater, K. A. 2008. Effects of Ingredients and Extrusion Parameters on Aquafeeds Containing DDGS and Cassava Starch. J. Aqua. Feed Sci. Nutr., 11:6-21.
10. Khoshtaghaza, M. H., Sokhansaj, S. and Ford, R. J. 1995. Thermal Diffusivity and Thermal Conductivity of Alfalfa Cube. Can. Agr. Eng., 37: 321-325.
11. Kumcuglu, S., Turgut, A. and Tavman, S. 2010. The Effects of Temperature and Muscle Composition on the Thermal Conductivity of Frozen Meats. J. Food Process. Pres., 34: 425–438
12. Kustermann, M. K. Scherer, R. and Kutzbach, H. D. 1981. Thermal Conductivity and Diffusivity of Shelled Corn and Grain. J. Food Process. Eng., 4: 137-153.
13. Mohsenin, N. N. 1980. Thermal Properties of Foods and Agricultural Materials. Gordon and Breach, Science Publishers, Inc., New York, PP. 83-87.
14. Morita, T. and Singh, R. P. 1979. Physical and Thermal Properties of Short-grain Rough Rice. Trans. ASAE, 22: 630-636.
15. Moysey, E. B., Shaw, J. T. and Lampman, W. P. 1977. The effect of Temperature and Moisture on the Thermal Properties of Rapeseed. Trans. ASAE, 20: 461-464.
16. Sabapathy N. D. and Tabil, L. G. 2004. Thermal Properties of Kabuli Type Chickpea. ASAE paper No. 046128, ASAE, St. Joseph, MI, USA.
17. Shepherd, H. and Bhardwaj, R. K. 1986. Moisture Dependant Physical Properties of Pigeon Pea. J. Agr. Eng. Res., 35: 227-234.
18. Singh, K. K. and Goswami, T. K. 2000. Thermal Properties of Cumin Seed. J. Food Eng., 45: 181-187.
19. Suter, D. A., Agrawal, K. K. and Clary, B. L. 1975. Thermal Properties of Peanut Pods, Hulls and Kernels. Trans. ASAE, 18: 370-375.
20. Tahmasebi, M., Tavakoli Hashjin, T., Khoshtaghaza, M. H. and Nikbakht, A. M. 2011. Evaluation of Thin-Layer Drying Models for Simulation of Drying Kinetics of Quercus (Quercus persica and Quercus libani). J. Agr. Sci. Tech., 13: 155-163.
21. Van Gelder, M. F. 1998. Thermistor Based Method for Measurement of Thermal Conductivity and Thermal Diffusivity of Moist Food Materials at High Temperatures. PhD. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
22. Wang, J. and Hayakawa. K. 1993. Maximum Slope Method for Evaluating Thermal Conductivity Probe Data. J. Food. Sci., 58: 1340-1345.
23. Yang, W., Sokhansanj, S., Tang, J. and Winter, P. 2002. Determination of Thermal Conductivity, Specific Heat and Thermal Diffusivity of Borage Seeds. Biosystems Eng., 82: 169–176.
24. Yang, W., Siebenmorgen, T. J., Thielen, T. P. H. and Cnossen, A. G. 2003. Effect of Glass Transition on Thermal Conductivity of Rough Rice. Biosystems Eng., 84: 193–200.