Micromorphological and Biocalcification Effects of Sporosarcina pasteurii and Sporosarcina ureae in Sandy Soil Columns

Authors
1 Department of Soil Science, Faculty of agriculture, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran.
2 Department of Soil Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
Microbial calcium carbonate, by bridging sand particles, can play an important role in sand dune stability. A study was carried out on the cementation of sand grains and infilling of pore spaces by CaCO3. Two bacterial species (Sporosarcina pasteurii and Sporosarcina ureae), three reactant concentrations (0.5, 1 and 1.5M), and six reaction times (12, 24, 48, 96, 192 and 288 hours) were tested in factorial experiment. Bacterial inocula and reactant solutions were added daily to sandy soil columns (6.5 cm height and inner diameter of 7.7 cm), while precipitation of CaCO3 being investigated within 0-1.5, 1.5-3, 3-4.5 and 4.5-6 cm intervals. Chemical and micromorphological analyses revealed that CaCO3 formation, inorganic C sequestration, and depth of cementation were more profound for S. pasteurii as compared with S. ureae. Both microbial CaCO3 precipitation and inorganic C sequestration increased with increase in reaction time from 12 to 288 hours. Increase in reactant concentration also caused an increase in CaCO3 precipitation (by 12%). Micromorphological observations showed a high degree of calcite crystals’ bridging, coating on sand particles and as well infilling of pore spaces. S. pasteurii is thus recommended for being used in stabilization of sand dunes; due to its significant effects on CaCO3 deposition and as well on sand grain cementation.

Keywords


1. Achal, V., Mukherjee, A., Basu, P. C. and Reddy, M. S. 2009a. Lactose Mother Liquor as an Alternative Nutrient Source for Microbial Concrete Production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol., 36: 433-438.
2. Achal, V., Mukherjee, A., Basu, P. C. and Reddy, M. S. 2009b. Strain Improvement of Sporosarcina pasteurii for Enhanced Urease and Calcite Production. J. Ind. Microbiol. Biotechnol., 36: 981-988.
3. Bang, S. S., Galinat, J. K. and Ramakrishnan, V. 2001. Calcite Precipitation Induced by Polyurethane-immobilized Bacillus pasteurii. Enzyme. Microb. Technol., 28: 404-409.
4. Cappuccino, J. G. and Sherman, N. 1987. Microbiology: A Laboratory Manual. 2nd Edition, Benjamin and Cummings Publishing Co., Inc., Menlo Park, CA, PP.451.
5. Castanier, S., Le Metayer-Levrel, G. and Perthuisot, J. P. 1999. Ca-carbonates Precipitation and Limestone Genesis: The Microbiogeologist Point of View. Sediment. Geolo., 126: 9-23.
6. Cunningham, A. B., Gerlach, R., Spangler, L., Mitchell, A. C., Parks, S. and Phillips, A. 2011. Reducing the Risk of Well Bore Leakage of CO2 Using Engineered Biomineralization Barriers. Energy Procedia, 4: 5178-5185.
7. Day, J. L., Ramakrishnan, V. and Bang, S. S. 2003. Microbiologically Induced Sealant for Concrete Crack Remediation, In Proc. of 16th Engineering Mechanics Conference, Seattle, PP. 1-8.
8. De Muynck, W., De Belie, N. and Verstraete, W. 2010. Microbial Carbonate Precipitation in Construction Materials: A Review. Ecol. Eng., 36: 118–136.
9. De Muynck, W., Cox, K., De Belie, N. and Verstraete, W. 2008a. Bacterial Carbonate Precipitation as an Alternative Surface Treatment for Concrete. Constr. Build. Mater., 22: 875-885.
10. De Muynck, W., Debrouwer, D., De Belie, N. and Verstraete, W. 2008b. Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials. Cement Concrete Res., 38: 1005-1014.
11. Dupraz, S., Menez, B., Gouze, P., Leprovost, R., Benezeth, P., Pokrovsky, O. S. and Guyot, F. 2009. Experimental Approach of CO2 Biomineralization in Deep Saline Aquifers. Chem. Geol., 265: 54–62.
12. Farpoor, M. H., Krouse, H. R. and Mayer, B. 2011. Geochemistry of Carbon, Oxygen and Sulfur Isotopes in Soils along a Climotoposequence in Kerman Province, Central Iran. J. Agr. Sci. Tech., 13: 953-964.
13. Gee, G. W. and Bauder, J. W. 1986. Particle Size Analysis. Part I. In: "Methods of Soil Analysis", (Ed): Klute, A.. 2nd Edition, Agron. Monogar. No: 9, ASA and Soil Science Society America, Madison, WI, PP. 383-409.
14. Ghosh, P., Mandal, S., Pal, S., Bandyopadhyaya, G. and Chattopadhyay, B. D. 2006. Development of Bioconcrete Material Using an Enrichment Culture of Novel Thermophilic Anaerobic Bacteria. Indian J. Exp. Biol., 44: 336-339.
15. Hammes, F., Boon, N., Villiers, J. D., Verstraete, W. and Siciliano, S. D. 2003. Strain-specific Ureolytic Microbial Calcium Carbonate Precipitation. Appl. Environ. Microbiol., 69(8): 4901-4909.
16. Ivanov, V. and Chu, J. 2008. Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil In situ. Rev. Environ. Sci. Biotechnol., 7: 139-153.
17. Khormali, F. and Nabiollahi, K. 2009. Degradation of Mollisols in Western Iran as Affected by Land Use Change. J. Agr. Sci. Tech., 11: 363-374.
18. Landi, A., Mermut, A. R. and Anderson, D. W. 2003. Origin and Rate of Pedogenic Carbonate Accumulation in Saskatchewan Soils, Canada. Geoderma, 117: 143-156.
19. Mclean, E. O. 1982. Soil pH and Lime Requirement. Part II. In: "Methods of Soil Analysis", (Ed): Page, A. L. Miller, R. H. and Keeney, D. R. 2nd Edition, Agron. Monogar. No: 9, ASA and Soil Science Society America, Madison, WI, PP. 199-223.
20. McCoy, D., Cetin, A. and Hausinger, R. P. 1992. Characterization of Urease from Sporosarcina ureae. Arch. Microbiol., 157: 411-416.
21. Moazallahi, M. and Farpoor, M. H. 2012. Soil Genesis and Clay Mineralogy along the Xeric-Aridic Climotoposequence in South Central Iran. J. Agr. Sci. Tech., 14: 683-696.
22. Murphy, C. P. 1986. Thin Section Preparation of Soils and Sediments. AB Academic Publishers, Berkhamsted, Herts, UK, PP.5-111.
23. Nelson, R. E. 1982. Carbonate and Gypsum. Part II. In: "Methods of Soil Analysis", (Ed): Page, A. L. Miller, R. H. and Keeney, D. R. 2nd Edition, Agron. Monogar. No: 9, ASA and Soil Science Society America, Madison, WI, PP. 181-196.
24. Nelson, D. W. and Sommers, L. E. 1982. Total Carbon, Organic Matter. Part II. In: "Methods of Soil Analysis", (Ed): Page, A. L. Miller, R. H. and Keeney, D. R. 2nd Edition, Agron. Monogar. No: 9, ASA and Soil Science Society America, Madison, WI, PP. 539-577.
25. Nemati, M. and Voordouw, G. 2003. Modification of Porous Media Permeability, Using Calcium Carbonate Produced Enzymatically In situ. Enzyme Microb. Technol., 33: 635-642.
26. Okwadha, G. D. O. and Li, J. 2010. Optimum Conditions for Microbial Carbonate Precipitation. Chemosphere, 81: 1143-1148.
27. Owliaie, H. R. 2012. Micromorphology of Pedogenic Carbonate Features in Soils of Kohgilouye, Southwestern Iran. J. Agr. Sci. Tech., 14: 225-239.
28. Rhoades, J. D. 1982. Soluble Salts. Part II. In: "Methods of Soil Analysis", (Ed): Page, A. L. Miller, R. H. and Keeney, D. R. 2nd Edition, Agron. Monogar. No: 9, ASA and Soil Science Society America, Madison, WI, PP. 167-178.
29. Sarda, D., Choonia, H. S., Sarode, D. D. and Lele, S. S. 2009. Biocalcification by Bacillus pasteurii Urease: A Novel Application. J. Ind. Microbiol. Biotechnol., 36: 1111- 1115.
30. Sarmast, M., Sarcheshmehpoor, M., Farpoor, M. H. and Eghbal, M. K. 2011a. Role of Sporosarcina pasteurii in Surface Crust Formation and Sand Dune Fixation. In Proc. of 5th National Conference and Exhibition on Environmental Engineering. Tehran, Iran, PP. 1-6.
31. Sarmast, M., Farpoor, M. H., Sarcheshmehpoor, M. and Eghbal, M. K. 2011b. Role of Sporosarcina pasteurii and Sporosarcina ureae in Sand Dune Fixation by Hydraulic Conductivity. In Proc. of 1th National Conference of Agricultural Science and New Technologies, Zanjan, Iran, PP. 499-502.
32. Siddique, R. and Chahal, N. K. 2011. Effect of Ureolytic Bacteria on Concrete Properties. Constr. Build. Mater., 25: 3791-3801.
33. Stocks-Fischer, S., Galinat, J. K. and Bang, S. S. 1999. Microbiological Precipitation of CaCO3. Soil Biol. Biochem., 31: 1563-1571.
34. Stoops, G. 2003. Guideline for the Analysis and Description of Soil and Regolith Thin Sections. SSSA, Madison, WI, PP. 182.
35. Tobler, D. J., Cuthbert, M. O., Greswell, R. B., Riley, M. S., Renshaw, J. C., Handley-Sidhu, S. and Phoenix, V. R. 2011. Comparison of Rates of Ureolysis between Sporosarcina pasteurii and an Indigenous Groundwater Community under Conditions Required to Precipitate Large Volumes of Calcite. Geochim. Cosmochim. Acta, 75: 3290–3301.
36. Verrecchia, E. P. and Verrecchia, K. E. 1994. Needle-fiber Calcite: A Critical Review and a Proposed Classification. J. Sediment. Res., 64: 650-664.
37. Whiffin, V. S. 2004. Microbial CaCO3 Precipitation for the Production of Biocement. PhD. Thesis, School of Biological Sciences and Biotechnology, Murdoch University, PP. 154.
38. Whiffin, V. S., Van Passen, L. A. and Harkes, M. P. 2007. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J., 24: 1-7.
39. Yoon, J. H., Lee, K. C., Weiss, N., Kho, Y. H., Kang, K. H. and Park, Y. H. 2001. Sporosarcina aquimarina sp. Nov.: A Bacterium Isolated from Seawater in Korea and Transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the Genus Sporosarcina as Sporosarcina globispora comb. Nov., Sporosarcina psychrophila comb. Nov., and Sporosarcina pasteurii comb. Nov., and Emended Description of the Genus Sporosarcina. Int. J. Syst. Evol. Micr., 51: 079- 1086.