Optimal Concentration of Zinc Sulfate in Foliar Spray to Alleviate Salinity Stress in Glycine soja

Authors
1 College of Chemistry and Life Science, Zhejiang Normal University
2 Shaoxing University Yuanpei College
3 School of Applied Sciences, Health Innovations Research Institute, RMIT University
4 College of Chemistry and Life Science, Zhejiang Normal University, 321004 Jinhua, China.
Abstract
Zinc has previously been reported to alleviate salinity stress in plants. In this study, we monitored various biomass and chlorophyll fluorescence parameters to determine the optimum zinc sulfate concentration that can be used as foliar spray to alleviate salinity stress in Glycine soja. The plants subjected to a series of salinity levels (NaCl concentration of 0, 100, 200, and 300 mmol L-1), applied via the nutrient solution, were sprayed with different concentrations of zinc sulfate (0, 5, 10, 15, 20, 25 µmol L-1). The results showed that the biomass and chlorophyll fluorescence parameters of seedlings were significantly affected by salt stress (P < 0.05). However, zinc sulfate sprays helped the plants to cope with the stress condition. The zinc sulfate concentrations that helped G. soja to cope with the salinity stress of 100, 200, and 300 mmol L-1 were 15 to 20, 15 to 20, and 10 to 20 µmol L-1, respectively. Lower zinc concentration was ineffective in alleviating stress and higher zinc concentration inhibited plant growth because of toxicological damage to plants. The zinc sulfate spray of 15 µmol L-1 was found to be the most appropriate at all salinity stress levels. The growth measurements such as true leaves part and dry weight of total seedlings were in agreement with the chlorophyll fluorescence parameters, indicating a visible enhancement of leaf photosynthetic activity at 10-20 µmol L-1 zinc concentrations.

Keywords


1. Keyser, H. H. and Li, F. 1992. Potential for Increasing Biological Nitrogen Fixation in Soybean. Plant Soil., 141: 119–135.
2. Concibido, V. C., Vallee, B. L., Mclaird, P., Pineda, N., Meyer, J., Hummel, L., Yang, J., Wu, K. and Delannay, X. 2003. Introgression of a Quantitative Trait Locus for Yield from Glycine soja into Commercial Soybean Cultivars. Tag Theoretical Applied Genetics, 106: 575–582.
3. Liu, Y. L., Li, Y. H., Zhou, G. A., Uzokwe, N., Chang, R. Z., Chen, S. Y. and Qiu, L. J. 2010. Development of Soybean EST-SSR Markers and Their Use to Assess Genetic Diversity in the Subgenus Soja. Agr. Sci. China., 9: 1423–1429.
4. Wang, K. J. and Takahata, Y. 2007. A Preliminary Comparative Evaluation of Genetic Diversity between Chinese and Japanese Wild Soybean (Glycine soja) Germplasm Pools Using SSR Markers. Genet. Resour. Crop Ev., 54: 157–165.
5. Kiang, Y. T., Chiang, Y. C. and Kaizuma, N. 1992. Genetic Diversity in Natural Populations of Wild Soybean in Iwate Prefecture, Japan. J. Hered., 83: 325–329.
6. Fujita, R., Ohara, M., Okazaki, O. and Shimamoto, Y. 1997. The Extent of Natural Cross-pollination in Wild Soybean (Glycine soja). J. Hered., 88: 124–128.
7. Wang, K. J., Li, X. H. and Li, F. S. 2008. Phenotypic Diversity of the Big Seed Type Sub-collection of Wild Soybean (Glycine soja Sieb. et Zucc.) in China. Genet. Resour. Crop Ev., 55: 1335–1346.
8. Mantri, N., Patade, V., Penna, S., Ford, R. and Pang, E. C. K. 2012. Abiotic Stress Responses in Plants: Present and Future. In: “Abiotic Stress Responses in Plants: Metabolism to Productivity”, (Eds.): Ahmad, P. and Prasad M. N. V. Springer, New York, PP. 1-19.
9. Munns, R. 2002. Comparative Physiology of Salt and Water Stress. Plant Cell. Environ., 25: 239–250.
10. Geilfus, C. M., Zorb, C. and Muhling, K. H. 2010. Salt Stress Differentially Affects Growth-Mediating ß-expansins in Resistant and Sensitive Maize (Zea mays L.). Plant Physiol. Bioch., 48: 993–998.
11. Ashraf, M. and Harris, P. J. C. 2004 Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Sci., 166: 3–16.
12. Du, C. X., Fan, H. F., Guo, S. R., Tekafumi, T. and Li, J. 2010. Proteomic Analysis of Cucumber Seedling Roots Subjected to Salt Stress. Phytochem., 71: 1450–1459.
13. Tavakkoli, E., Rengasamy, P. and McDonald, G. K. 2010. High Concentrations of Na+ and Cl- Ions in Soil Solution Have Simultaneous Detrimental Effects on Growth of Faba Bean under Salinity Stress. J. Exp. Bot., 1: 4449–4459.
14. Alpaslan, M., Inal, A., Gunes, A., Cikili, Y. and Ozcan, H. 1999. Effect of Zinc Treatment on the Alleviation of Sodium and Chloride Injury in Tomato (Lycopersicum esculentum (L.) Mill. cv. Lale) Grown under Salinity. Tr. J. Bot., 23: 1–6.
15. Tavallali, V., Rahemi, M., Eshghi, S., Kholdebarin, B. and Ramezanian, A. 2010. Zinc Alleviates Salt Stress and Increases Antioxidant Enzyme Activity in the Leaves of Pistachio (Pistacia vera L. ‘Badami’) Seedlings. Turk. J. Agri. For., 34: 349-359.
16. Aregheore, E. M. 2012. Nutritive Value and Inherent Anti-nutritive Factors in Four Indigenous Edible Leafy Vegetables in Human Nutrition in Nigeria: A Review. J. Food Res. Sci., 1: 1-14.
17. Cherif, J., Derbel, N., Nakkach, M., Bergmann, H. V., Jemal, F. and Lakhdar, Z. B. 2010. Analysis of In vivo Chlorophyll Fluorescence Spectra to Monitor Physiological State of Tomato Plants Growing under Zinc Stress. J. Photoch. Photobio. B., 101: 332–339.
18. Cakmak, I. 2000. Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species. New Phytol., 146: 185–205.
19. Zago, M. P. and Oteiza, P. I. 2001. The Antioxidant Properties of Zinc: Interactions with Iron and Antioxidants. Free Radical Bio. Med., 31: 266–274.
20. Bonnet, M., Camares, O. and Veisseire, P. 2000. Effects of Zinc and Influence of Acremonium lolii on Growth Parameters, Chlorophyll Fluorescence and Antioxidant Enzyme Activities of Ryegrass (Lolium perenne L. cv Apollo). J. Exp. Bot., 51: 945–953.
21. Rout, G. R. and Das, P. 2003. Effect of Metal Toxicity on Plant Growth and Metablism: I. Zinc. Agron., 23: 3–11.
22. Lingua, G., Franchin, C., Todeschini, V., Castiglione, S., Biondi, S., Burlando, B., Parravicini, V., Torrigiani, P. and Berta, G. 2008. Arbuscular Mycorrhizal Fungi Differentially Affect the Response to High Zinc Concentrations of Two Registered Poplar Clones. Environ. Pollut., 153: 137–147.
23. Andrade, S. A. L., Gratao, P. L., Schiavinato, M. A., Silveira, A. P. D., Azevedo, R. A. and Mazzafer, P. 2009. Zn Uptake, Physiological Response and Stress Attenuation in Mycorrhizal Jack Bean Growing in Soil with Increasing Zn Concentrations. Chemosphere, 75: 1363–1370.
24. Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W. and Lin, Z. P. 2009. The Effect of Excess Zn on Mineral Nutrition and Antioxidative Response in Rapeseed Seedlings. Chemosphere, 75: 1468–1476.
25. Chaloub, R. M., Magalhaes, C. C. P. D. and Dos Santos, C. P. 2005. Early Toxic Effects of Zinc on PSII of Synechocystis aquatilis F. aquatilis (cyanophyceae). J. Phycol., 41: 1162–1168.
26. Dhir, B., Sharmila, P. and Pardha Sarad, P. 2008. Photosynthetic Performance of Salvinia natans Exposed to Chromium and Zinc Rich Wastewater. Braz. J. Plant Physiol., 20: 61–70.
27. Verma, T. S. and Neue, H. U. 1984. Effect of Soil Salinity Level and Zinc Application on Growth, Yield, and Nutrient Composition of Rice. Plant Soil., 82: 3–14.
28. Tzortzakis, N. G. 2010. Potassium and Calcium Enrichment Alleviate Salinity-Induced Stress in Hydroponically Grown Endives. J. Hortic. Sci., 37: 155–162.
29. Yildirim, E., Turan, M. and Guvenc, I. 2008. Effect of Foliar Salicylic Acid Applications on Growth, Chlorophyll, and Mineral Content of Cucumber Grown under Salt Stress. J. Plant Nutr., 31: 593–612.
30. Qu, Y. N., Zhou, Q. and Yu, B. J. 2009. Effects of Zn2+ and Niflumic Acid on Photosynthesis in Glycine soja and Glycine max Seedlings under NaCl Stress. Environ. Exp. Bot., 65: 304–309.
31. Zheng, H., Lu, H. F., Zheng, Y. P., Lou, H. Q. and Chen, C. Q. 2010. Automatic Sorting of Chinese Jujube (Zizyphus jujuba Mill. cv. ‘hongxing’) Using Chlorophyll Fluorescence and Support Vector Machine. J. Food Eng., 101: 402–408.
32. Jiang, L., Shen, Z., Zheng, H., He, W., Deng, G. and Lu, H. 2013. Noninvasive Evaluation of Fructose, Glucose and Sucrose Contents in Fig Fruits during Development Using Chlorophyll Fluorescence and Chemometrics. J. Agr. Sci. Tech., 15: 333-342.
33. Genty, B., Briantais, J. M. and Baker, N. R. 1989. The Relationship between Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. BBA–Gen. Subjects, 990: 87–92.
34. Seemann, J. R. and Critchley, C. 1985. Effects of Salts Stress on the Growth, Ion Content, Stomatal Behaviour and Photosynthetic Capacity of a Salt-sensitive Species, Phaseolus vulgaris L. Planta, 164: 151–162.
35. Ghassemi-Golezani, K., Taifeh-Noori, M., Oustan, S. and Moghaddam, M. 2009. Response of Soybean Cultivars to Salinity Stress. J. Food Agric. Environ., 7: 401–404.
36. Vallee, B. L. and Auld, D. S. 1990. Zinc Coordination, Function, and Structure of Zinc Enzymes and Other Proteins. Bioch., 29: 5647–5659.
37. Rockenfeller, P. and Madeo, F. 2008. Apoptotic Death of Ageing Yeast. Exp. Gerontol., 43: 876-881.
38. Belkhodja, R., Morales, F., Abadia, A., Gomez-aparisi, J. and Abadia, J. 1994. Chlorophyll Fluorescence as a Possible Tool for Salinity Tolerance Screening in Barler (Hordeum vulgare L.). Plant Physiol., 104, 667–673.
39. Jimenez, M. S., Gonzalez-rodriguez, A. M., Morales, D., Cid, M. C., Socorro, A. R. and Caballero, M. 1997. Evaluation of Chlorophyll Fluorescence as a Tool for Salt Stress Detection in Roses. Photosynthetica., 33: 291–301.
40. Sayed, O. H. 2003. Chlorophyll Fluorescence as a Tool in Cereal Crop Research. Photosynthetica, 41: 321–330.
41. Dai, Y. J., Shen, Z. G., Liu, Y., Wang, L. L., Hannaway, D. and Lu, H. F. 2009. Effects of Shade Treatments on the Photosynthetic Capacity, Chlorophyll Fluorescence, and Chlorophyll Content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot., 65: 177–182, 2009.
42. Bjorkman, O. and Demmig, B. 1987. Proton Yield of O2 Evolution and Chlorophyll Fluorescence Characteristics at 77K among Vascular Plants of Diverse Origins. Planta, 170: 489–504.
43. Lundmark, T., Bergh, J., Strand, M. and Kopel, A. 1998. Seasonal Variation of Maximum Photochemical Efficiency in Boreal Norway Spruce Stands. Tree-Structure Function, 13: 63–67.
44. Veres, S., Toth, V. R., Laposi, R., Olah, V., Lakatos, G. and Meszaros, I. 2006. Carotenoid Composition and Photochemical Activity of Four Sandy Grassland Species. Photosynthetica, 44: 255–261.
45. Guo, H. X., Liu, W. Q. and Shi, Y. C. 2006. Effects of Different Nitrogen Forms on Photosynthetic Rate and the Chlorophyll Fluorescence Induction Kinetics of Flue-cured Tobacco. Photosynthetica, 44: 140–142.
46. Tezara, W., Martinez, D., Rengifo, E. and Herrera, A. 2003 Photosynthetic Responses of the Tropical Spiny Shrub Lycium nodosum (Solanaceae) to Drought, Soil Salinity and Saline Spray. Ann. Bot-London, 92: 757–765.
47. Mao, L. Z., Lu, H. F., Wang, Q. and Cai, M. M. 2007. Comparative Photosynthesis Characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica, 45: 601–605.
48. Jin, X. F., Yang, X. E., Islam, E., Liu, D., Mahmood, Q., Li, H. and Li, J. 2006. Ultrastructural Changes, Zinc Hyperaccumulation and Its Relation with Antioxidants in Two Ecotypes of Sedum alfredii Hance. Plant Physiol. Bioch., 46: 997–1006.
49. Mantri, N., Pang, E. C. K. and Ford, R. 2010. Molecular Biology for Stress Management. In: “Climate Change and Management of Cool Season Grain Legume Crops”, (Eds.): Yadav, S. S., McNeil, D. N., Weeden, N. and Patil, S. S.. Springer, Heidelberg, PP. 377-408.
50. Rang, Z. W., Jagadish, S. V. K., Zhou, Q. M., Craufurd, P. Q. and Heuer, S. 2011. Effect of High Temperature and Water Stress on Pollen Germination and Spikelet Fertility in Rice. Environ. Exp. Bot., 70: 58–65.
51. Matoh, T., Kairusmee, P. and Takahashi, E. 1986. Salt-induced Damage to Rice Plants and Alleviation Effects of Silicate. Soil Sci. Plant Nutr., 32: 295–304.
52. Ahmad, R., Zaheer, S. H. and Ismail, S. 1992. Role of Silicon in Salt Tolerance of Wheat (Triticum aestivum L.). Plant Sci., 85: 43–50.
53. Al-Aghabary, K., Zhu, Z. J. and Shi, Q. H. 2005 Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence and Antioxidative Enzyme Activities in Tomato Plants under Salt Stress. J. Plant Nutr., 27: 2101–2115.
54. Zhu, Z. J., Wei, G. Q., Li, J., Qian, Q. Q. and Yu, J. Q. 2004. Silicon Alleviates Salt Stress and Increases Antioxidant Enzymes Activity in Leaves of Salt-stressed Cucumber (Cucumis sativus L.). Plant Sci., 167: 527–533.