Effects of Polyamines and Iron on Iron Absorption, Yield, and Enzymatic Activity in Soybean

Document Type : Original Research

Authors
1 Department of Agrotechnology, YI.C, Islamic Azad University, Tehran, Iran
2 Department of Chemistry, Te.Ms, Islamic Azad University, Tehran, Iran
Abstract
Soybean, a globally vital legume prized for its high protein and oil content, is essential for meeting human nutritional demands. This study evaluated the influence of polyamines (PAs), applied both individually and in combination with iron, on soybean yield and yield components over the 2021 and 2022 growing seasons. The field experiment was conducted at the research farm of Azad University using a randomized complete block design with three replications. The experimental treatments consisted of foliar applications of 2 mM spermine, spermidine, and putrescine, each with and without 2 mM iron, as well as combinations of 1 mM of polyamine with 3 mM iron were included to assess synergistic effects. Additionally, the iron sulfate and a control treatment were included. The results indicated that the treatments significantly affected the growth and yield components (such as plant height, pod number, seed weight, harvest index, seed protein and oil content) and the nutrient contents including Zn, Fe, B, N and Mg. The use of spermidine with iron treatment increased the seed weight by 71% compared to the control. As well as, the application of polyamines combined with Fe resulted in a significant increase in the activities of superoxide dismutase (44%), peroxidase (63%), and catalase (43%) enzymes compared to control. Notably, among the polyamines, spermidine combined with iron had the most significant effects on the studied traits and enzyme activity. These findings suggest that the application of polyamines with iron can significantly improve the soybean yield and yield components.

Keywords

Subjects


1.    Abbas, G., Abrar, M.M., Naeem, M.A., Siddiqui, M.H., Ali, H.M. and Li, Y. 2022. Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: Multivariate comparison of physiological and oxidative stress attributes. J. Soils Sediments 22: 1446–1459.
2.    Abbas, G., Amjad, M., Saqib, M., Murtaza, B., Asif, N.M. and Shabbir, A. 2021. Soil sodicity is more detrimental than salinity for quinoa (Chenopodium quinoa Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. J. Agron. Crop Sci. 207: 59–73.
3.    Alet, A.I., Sanchez, D.H., Cuevas, J.C., Marina, M., Carrasco, P., Altabella, T., Tiburcio, A.F. and Ruiz, O.A. 2012. New insnghts into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant. Sci. 182: 94-100.
4.    Amani, M. 2020. The effect of polyamines on growth and yield of soybean (Glycine max L.) under drought stress. MSc thesis, University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources Department of Plant production and genetics, Ardabil, Iran. Pp. 130.
5.    Askary, M., Talebi, S.M., Amini, F. and Dousti Balout Bangan, A. 2018. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 63(1): 65-75. https://doi.org/10.6001/biologija.v63i1.3476
6.    Briat, J.F., Dubos, C. and Gaymard, F. 2015. Iron nutrition, biomass production and plant product quality. Trends in plant sci. 20(1): 33-40. https://doi.org/10.1016/j.tplants.2014.07.005
7.    Chen, J., Wu, F.H., Shang, Y.T., Wang, W.H., Hu, W.J., Simon, M., Liu, X., Shangguan, Z.P., Zheng, H.L. 2015. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. J. Exp. Bot. 66, 6605–6622.
8.    Chen, W.W., Yang, J.L., Qin, C., Jin, C.W., Mo, J.H., Ye, T., Zheng, S.J. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in ArabidopsisPlant Physiol154, 810–819.
9.    Ehsanfar, S., Soroshzade, Q., Modares, A. and Ghorbani, M. 2018. The effect of foliar application of polyamines on yield and yield components of saffron (Crocus sativus L.). J. of plant proc. and func. 7(23): 99-110.
10. El-Abagy, H.M.H., Rashad, El-Sh.M., Abdel-Mawgoud, A.M.R. and El-Greadly, N.H.M. 2010. Physiological and biochemical effects of some bioregulators on growth, productivity and quality of artichoke (Cynara Scolymus L.). Res. J. agri. Biologic. Sci. 6: 683-690.
11. Ghanbari, S., Nooshkam, A., Fakheri, B. and Mahdi-Nejad, N. 2019. Investigating the relationships between yield and its components in different soybean genotypes using multivariate statistical methods. Crop plant breed. Res. J. 11(29): 85-92. Doi: 10.29252/jcb.11.29.85
12. Graziano, M., Beligni, M.V., Lamattina, L. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiol130, 1852–1859.
13. Graziano, M., Lamattina, L. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J.  52, 949–960.
14. Guleria, S., Sharma, S. and Munshi, S.K. 2007. Compositional changes in soybean (Glycine max L.) seeds influenced by their positions on stem axis. J Food Sci Technol 44:607–610
15. Gülser, F., Yavuz, H., Gökkaya, T. and Sedef, M. 2019. Effects of iron sources and doses on plant growth criteria in soybean seedlings. Eurasian j. soil sci. 8(4): 298 – 303. DOI: 10.18393/ejss.582231
16. Hande Alici, E. and Arabaci, G.. 2016. Determination of SOD, POD, PPO and CAT Enzyme Activities in Rumex obtusifolius L. Ann. Res. Review in Biol. 11(3): 1-7.
17. Heidarian, A.R., Kord, H., Mostafavi, K., Lak, A. and Amini, F. 2011. Investigating Fe and Zn foliar application on yield and its components of soybean (Glycine max (L) Merr.) at different growth stages. J. agri. Biotech.sustain. develop. 3(9): 189 -197.
18. Hussein, M., Nadia, M., EL-Gereadly, H. M. and EL-Desuki, M. 2006. Role of putrescine in resistance to salinity of pea plants (Pisum sativum L.). Applied Sci. Res. 2: 598-604.
19. Iftikhar, A., Abbas, G., Saqib, M., Shabbir, A., Amjad, M., Shahid, M. and Qaisrani, S.A. 2022. Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: A multivariate comparison of physiological and biochemical attributes. Environ. Geochem. Health, 44: 257–272.
20. Iqbal, H., Yaning, C., Waqas, M., Shareef, M. and Raza, S.T. 2018. Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicol. Environ. Saf. 164: 344–354.
21. Jin, C.W., Du, S.T., Chen, W.W., Li, G.X., Zhang, Y.S., Zheng, S.J. 2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol. 150, 272–280
22. Kausano, T., Berberich, T., Tateda, C. and Takahashi, Y. 2008. Polyamines: essential factors for growth and survival. Planta, 228: 367-381. DOI: 10.1007/s00425-008-0772-7
23. Kong, W.W., Zhang, L.P., Guo, K., Liu, Z.P., Yang, Z.M. 2010. Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnol. J. 8, 88–99.
24. Krishna, A., Singh, G., Kumar, D. and Agarwal, K. 2003. Physico-chemical characteristics of some new varieties of soybean. J Food Sci Technol 40:490–492
25. Mahqob, M.H., Abd El Aziz, N.G. and Mazhar, M.A. 2011. Response of Dahilia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. American-Eurupian J.Agri. Envir. Sci. 10: 769-775.
26. Malekoti, M. J. and Tehrani, M. M. 2010. Effect of exogenous application of putrescine and spermidine on grain yield and some physiological traits of soybean (Glycine max L.) under heat stress. Iranian J. Plant Physiol 1(1): 199-206.
27. Mirzashahi, K., Noorgholipoor, F. and Samavat, S. 2016. Evaluation of iron sulfate and iron folate on growth and yield of soybean (Glycine max L.). Inter. J.biosci. 9(2): 144-152.
28. Mohadeseh, M., Moursy, E.L. and Tateda, C. 2012. Effect of exogenous spermidine and putrescine on growth and some biochemical characteristics of strawberry (Fragaria × ananassa Duch.) plants under salt stress conditions. J. agri. Sci. technol. 14(4): 799-808.
29. Nohepishah, M. and Kalantari, K. M. 2011. Effect of putrescine and spermidine on growth and yield of wheat. J. agri. Sci.technol. 13(4): 589-596.
30. Pál, M., Szalai, G., Kinga Gondor, O. and Janda, T. 2021. Unfinished story of polyamines: Role of conjugation, transport and light-related regulation in the polyamine metabolism in plants. Plant Sci. 308: 110923, https://doi.org/10.1016/j.plantsci.2021.110923.
31. Rahdari, P. 2019. Effect of polyamine spraying on growth and yield components of soybean (Glycine max L.). Iranian J. Hort. 50(2): 331-340
32. Rahdari, P. and Hoseini, S.M. 2012. Roll of polyamines (spermidine and putrescine) on protein, chlorophyll and phenolic compounds in soybean (Glycine max L.) under salinity stress. J. Nov. applied sci. 2 (12): 746-751
33. Ramteke, R., Kumar, V., Murlidharan, P. and Agarwal, D.K. 2010. Study on genetic variability and traits interrelationship among released soybean varieties in India [Glycine max (L.) Merrill]. Elect J Plant Breeding 1:1483–1487
34. Rangan, P., Subramani, R., Kumar, R., Singh, A. K. and Singh, R. 2014. Recent advances in polyamine metabolism and abiotic stress tolerance. Biolog. Medicine Res. Intern. 6(3): 604-621. https://doi.org/10.1155/2014/239621
35. Rashid, N., Basra, S.M., Shahbaz, M., Iqbal, S. and Hafeez, M.B. 2018. Foliar applied moringa leaf extract induces terminal heat tolerance in quinoa. Int. J. Agric. Biol. 20: 157–164.
36. Rawia, A.E., Eid, L., Taha, S. and Ibrahiem, S.S.M. 2011. Alleviation of Adverse Effects of Salinity on Growth, and Chemical Constituents of Marigold Plants by Using Glutathione and Ascorbate. J.Applied Sci. Res. 7: 714-721.
37. Sheikhzadeh, P., Amani, M., Khomari, S., Zare, N. and Razmi, N. 2022. Improvement of soybean physiological traits and yield under the end season drought stress conditions through the foliar spray of nutrient elements and polyamine. Environ. Stress Crop Sci15(3), 595-611. doi: 10.22077/escs.2021.4056.1959
38. Shi, H. and Chan, Z. 2014. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J. Integrative Plant Biol. 56: 114-121 doi: 10.1111/jipb.12128.
39. Shoaei, S., Hamidi, A. and kashani, A. 2009. The effect of iron and zinc foliar application on yield and yield components of soybean (Glycine max L.). J.  agri. Sci.technol. 11(1): 59-64.
40. Tang, W. and Newton, R. J. 2005. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul. 46: 31-43. https://doi.org/10.1007/s10725-005-6395-0
41. Tun, N.N., Santa-Catarina, C., Begum, T., Silveira, V., Handro, W., Floh, E.I., Scherer, G.F. 2006. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 47, 346–354.
42. Zhu, X.F., Wang, B., Song, W.F., Zheng, S.J., Shen, R.F. 2016. Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall Fe in Arabidopsis. Plant Physiol. 170, 558–567.
43. Zidan, M. S., Hozayn, M. and Abd El-Salam, M. E. E. 2010. Effect of some growth regulators and iron chelates on growth, yield and chemical constituents of soybean (Glycine max L.). World j.agri. sci. 6(3): 270-277.

Articles in Press, Accepted Manuscript
Available Online from 27 October 2025