Urea-Formaldehyde Nanoencapsulation Enhances Bunium persicum Essential Oil's Toxicity Against Brevicoryne brassicae

Document Type : Original Research

Authors
1 Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
2 Department of Plant Protection, Isfahan Research and Education Center for Agriculture and Natural Resources, AREEO, Isfahan, Iran
3 Department of Pesticide Research, Iranian Research Institute of Plant Protection, AREEO, Tehran, Iran.
4 Institute of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
Abstract
Brevicoryne brassicae L. (Hemiptera: Aphididae), a highly destructive cabbage aphid native to Europe, has become a globally distributed pest of significant agricultural concern. This species currently poses significant challenges for cabbage production, resulting in substantial crop losses. The fresh consumption of cabbage necessitates the development of non-chemical control methods to ensure food safety while effectively managing pest populations. However, this study investigated the aphicidal activity of both pure and nanoencapsulated Bunium persicum (Boiss.) Fedtsch essential oils against B. brassicae. The essential oil (EO), obtained through hydrodistillation and analyzed by gas chromatography and mass spectrophotometry (GC-MS), contained γ-Terpinen (36.62%), ρ-Cymene (18.41%), Carvacrol (13.60%), and Cuminaldehyde (13.50%) as its major components. Nanocapsules were synthesized via in situ polymerization of an oil-in-water emulsion and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), revealing spherical particles with a median diameter of 10.88 nm and a low polydispersity index (PDI) of 0.057. Bioassays demonstrated that the nanoencapsulated formulation exhibited significantly higher toxicity than the pure EO, with lower contact LC50 and LC90 values (365.43 and 1908.46 µL/L water, respectively) compared to the pure EO (1030.40 and 3977.08 µL/L water). Similarly, the fumigant LC50 and LC90 values for the nanocapsules (23.15 and 59.49 µL/L air) were significantly lower than those of the pure EO (35.07 and 79.59 µL/L air). The findings suggest the potential of nanoencapsulated B. persicum EO in integrated pest management for controlling cabbage aphid.

Keywords

Subjects


Abbassy, M. A., Abdelgaleil, S. A. and Rabie, R. Y. 2009. Insecticidal and synergistic effects of Majorana hortensis essential oil and some of its major constituents. Entomol. Exp. Appl., 131(3): 225-232.
Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18(2): 265-267.
Abdelgaleil, S. A., Mohamed, M. I., Badawy, M. E. and El-arami, S. A. 2009. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol., 35: 518-525.
Adams, R. P. 2007. Identification of essential oil compounds by gas chromatography/mass spectrometery, 4th ed. Allured Publishing Corporation, Carol Stream, 804 pp.
Ahmad, M. and Akhtar, S. 2013. Development of insecticide resistance in field populations of Brevicoryne brassicae (Hemiptera: Aphididae) in Pakistan. J. Econ. Entomol., 106(2): 954-958.
Ahmad, M. and Aslam, M. 2005. Resistance of cabbage aphid, Brevicoryne brassicae (Linnaeus) to endosulfan, organophosphates and synthetic pyrethroids. Pak. J. Zool., 37(4): 293.
Ahmadi, Z., Saber, M., Bagheri, M. and Mahdavinia, G. R. 2018. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticaeJ. Pest Sci., 91: 837-848.
Campolo, O., Giunti, G., Russo, A., Palmeri, V. and Zappalà L. 2018. Essential oils in stored product insect pest control. J. Food Qual., 2018(1): 6906105.
Canassa, V. F., Baldin, E. L. L., Lourenção, A. L., Barros, D. R. P., Lopes, N. P. and Sartori, M. M. P. 2020. Feeding behavior of Brevicoryne brassicae in resistant and susceptible collard greens genotypes: interactions among morphological and chemical factors. Entomol. Exp. Appl., 168(3): 228-239.
Cheng, S. S., Chang, H. T., Lin, C.Y., Chen, P. S., Huang, C.G., Chen, W. J. and Chang, S.T. 2009. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag. Sci., 65(3): 339-343.
Crawley, M. J. 2012. The R book. John Wiley & Sons., Chichester, 633 pp.
da Silva, S. G., Sant’Ana, J., Jahnke, S. M. and dos Santos, C. D. R. 2023. Effects of essential oils from the Brazilian pepper tree, eucalyptus and citronella on brassica aphids Brevicoryne brassicae and Myzus persicae (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (Hymenoptera: Braconidae). J. Plant Prot. Res., 63(3): 286-296.
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S. and Mozafari, M. R. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharm., 10(2): 57.
Fang, J. Y., Leu, Y. L., Chang, C. C., Lin, C. H. and Tsai, Y. H. 2004. Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Deliv., 11(2): 97-105.
Gonzalez-Hurtado, M., Rieumont-Briones, J., Castro-González, L. M., Zumeta-Dube, I. and Galano, A. 2017. Combined experimental–theoretical investigation on the interactions of Diuron with a urea–formaldehyde matrix: implications for its use as an “intelligent pesticide”. Chem. pap., 71: 2495-2503.
Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., Consoli, G. M. L., Cafiso, V., Stefani, S. and Geraci, C. 2018. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem., 269: 286-292.
Hayatsu, M. 2014. A novel function of controlled-release nitrogen fertilizers. Microbes Environ., 29(2): 121-122.
Heidary, M., Karimzadeh, J., Jafari, S., Negahban, M. and Shakarami, J. 2022. Aphicidal activity of urea–formaldehyde nanocapsules loaded with the Thymus daenensis Celak essential oil on Brevicoryne brassicae L. Int. J. Trop. Insect Sci., 42: 1285-1296.
Jahan, F., Abbasipour, H. and Hasanshahi, G. 2016. Fumigant toxicity and nymph production deterrence effect of five essential oils on adults of the cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). J. Essent. Oil-Bear. Plants, 19(1): 140-147.
Kah, M. and Hofmann, T. 2014. Nanopesticide research: current trends and future priorities. Environ. Int., 63: 224-235.
Kah, M., Beulke, S., Tiede, K. and Hofmann, T. 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol., 43(16): 1823-1867.
Khanavi, M., Laghaei, P. and Isman, M. B. 2017. Essential oil composition of three native Persian plants and their inhibitory effects in the cabbage looper, Trichoplusia niJ. Asia-Pac. Entomol., 20(4): 1234-1240.
Khoee, S. and Yaghoobian, M. 2009. An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur. J. Med. Chem., 44(6): 2392-2399.
Khoobdel, M., Ahsaei, S. M. and Farzaneh, M. 2017. Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst). Entomol. Res., 47(3): 175-184.
Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A. and Kim, K. H. 2019. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Contr. Release, 294: 131-153.
Lopez, M. D. and Pascual-Villalobos, M. J. 2010. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop. Prod., 31(2): 284-288.
Moghimi, R., Aliahmadi, A., Rafati, H., Abtahi, H. R., Amini, S. and Feizabadi, M. M. 2018. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumanniiJ. Mol. Liq., 265, 765-770.
Moharramipour, S. and Negahban, M. 2014. Plant essential oils and pest management. p. 129-153. In: “Basic and applied aspects of biopesticides” (K. Sahayaraj ed.) Springer, pp. 384.
Moravvej, G., Of-Shahraki, Z. and Azizi-Arani, M. 2011. Contact and repellent activity of Elletaria cardamomum (L.) Maton. and Bunium persicum (Boiss.) Fedtsch. oils against Tribolium castaneum (Herbst) adults (Coleoptera: Tenebrionidae). IJMAPR, 27(2): 224-238.
Mozaffarian, V. 2012. Identification of medicinal and aromatic plants of Iran. Farhang Moaser Publishers, Tehran, 1444 pp.
Nematollahi, M. R., Fathipour, Y., Talebi, A. A., Karimzadeh, J. and Zalucki, M. P. 2014. Sampling procedure and temporal-spatial distribution of the cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae), on canola. J. agric. sci. technol., 16:1241-1252.
Nickavar, B., Adeli, A. and Nickavar, A. 2014. Analyses of the essential oil from Bunium persicum fruit and its antioxidant constituents. J. Oleo Sci., 63(7): 741-746.
Nouri Ganbalani, G., Abedi, Z., Mottaghinia, L. and Nouri, A. 2021. Fumigant toxicity and sublethal effects of black cumin (Bunium persicum Boiss.), cinnamon (Cinnamomum zeylanicum Blume), and peppermint (Mentha piperita L.) essential oils against the Angoumois grain moth, Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae). Iran J. Plant Prot. Sci​​., 52(1): 53-67.
Nuruzzaman, M. D., Rahman, M. M., Liu, Y. and Naidu, R. 2016. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agric. Food Chem., 64(7): 1447-1483.
Patel, A. K., Joshi, D., Khan, A., Jaisval, G. K., Kumar, A., Pathania, R., Hasan, W. and Kushwaha, T. N. 2024. Biology, diversity, distribution, and characterization of Brevicoryne brassicae (L.) cabbage. Int. J. Plant Sci., 36(3): 336-347.
Perinelli, D. R., Pavela, R., Bonacucina, G., Baldassarri, C., Spinozzi, E., Torresi, J., Petrelli R., Morshedloo, M. R., Maggi, F., Benelli, G. and Canale, A. 2022. Development, characterization, insecticidal and sublethal effects of Bunium persicum and Ziziphora clinopodioides-based essential oil nanoemulsions on Culex quinquefasciatusInd. Crop. Prod.186, 115249.
Perlatti, B., de Souza Bergo, P. L., Fernandes, J. B. and Forim, M. R. 2013. Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: “Insecticides - Development of Safer and More Effective Technologies” (S. Trdan ed.). InTech
Raza, A., Hafeez, M. B., Zahra, N., Shaukat, K., Umbreen, S., Tabassum, J. and Hasanuzzaman, M. 2020. The plant family Brassicaceae: Introduction, biology, and importance. p. 1-43. In: “The Plant Family Brassicaceae Biology and Physiological Responses to Environmental Stresses” (M. Hasanuzzaman ed.). Springer, pp 531.
Rezaei, M. and Moharramipour, S. 2019. Efficacy of Dayabon, a botanical pesticide, on different life stages of Myzus persicae and its biological control agent, Aphidius matricariaeJ. Crop Prot., 8(1): 1-10.
Rezaei, M., Khaghani, R. and Moharramipour, S. 2019. Insecticidal activity of Artemisia sieberi, Eucalyptus camaldulensis, Thymus persicus and Eruca sativa oils against German cockroach, Blattella germanica (L.). J. Asia-Pac. Entomol., 22(4): 1090-1097.
Rochmadi, A.P. and Hasokowati, W. 2010. Mechanism of microencapsulation with urea-formaldehyde polymer. Am. J. Appl. Sci., 7(6): 739-745.
Sanei-Dehkordi, A., Vatandoost, H., Abaei, M. R., Davari, B. and Sedaghat, M. M. 2016. Chemical composition and larvicidal activity of Bunium persicum essential oil against two important mosquitoes’ vectors. J. Essent. Oil-Bear. Plants, 19(2): 349-357.
Stadler, T., Buteler, M., Valdez, S. R. and Gitto, J.G. 2018. Particulate nanoinsecticides: a new concept in insect pest management. In: “Insecticides: agriculture and toxicology” (G. Begum ed.). InTech.
Thiviya, P., Gunawardena, N., Gamage, A., Madhujith, T. and Merah, O. 2022. Apiaceae family as a valuable source of biocidal components and their potential uses in agriculture. Hortic., 8(7): 614.
Ting, Z., Min, Z., Xiao‐Mei, T., Feng, C. and Jian‐Hui, Q. 2010. Optimal preparation and characterization of poly (urea–formaldehyde) microcapsules. J. Appl. Polym. Sci., 115(4): 2162-2169.
Varona, S., Kareth, S., Martín, Á. and Cocero, M. J. 2010. Formulation of lavandin essential oil with biopolymers by PGSS for application as biocide in ecological agriculture. J. Supercrit. Fluids., 54(3): 369-377.
Vatandoost, H., Rustaie, A., Talaeian, Z., Abai, M. R., Moradkhani, F. and Vazirian, M., Khanavi, M. (2018). Larvicidal activity of Bunium persicum essential oil and extract against malaria vector, Anopheles stephensiJ. Arthropod. Borne Dis., 12(1): 85-93.
Wheeler, M. W., Park, R. M. and Bailer, A. J. 2006. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem., 25(5): 1441-1444.
Yang, F. L., Li, X. G., Zhu, F. and Lei, C. L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 57(21): 10156-10162.
Zhang, D. X., Li, B. X., Zhang, X. P., Zhang, Z. Q., Wang, W. C. and Liu, F. 2016. Phoxim microcapsules prepared with polyurea and urea–formaldehyde resins differ in photostability and insecticidal activity. J. Agric. Food Chem., 64(14): 2841-2846.
Zhu, L. and Tian, Y. J. 2011. Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagusAsian Pac. J. Trop. Med.4(5): 371-374.
Ziaee, M., Moharramipour, S. and Mohsenifar, A. 2014. MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J. Pest Sci., 87: 691-699.

Articles in Press, Accepted Manuscript
Available Online from 06 October 2025